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Abstract

Engineering of biologic skin substitutes has progressed over time from individual applications of skin cells, or biopolymer
scaffolds, to combinations of cells and scaffolds for treatment, healing, and closure of acute and chronic skin wounds.
Skin substitutes may be categorized into three groups: acellular scaffolds, temporary substitutes containing allogeneic
skin cells, and permanent substitutes containing autologous skin cells. Combined use of acellular dermal substitutes with
permanent skin substitutes containing autologous cells has been shown to provide definitive wound closure in burns
involving greater than 90% of the total body surface area. These advances have contributed to reduced morbidity and
mortality from both acute and chronic wounds but, to date, have failed to replace all of the structures and functions of
the skin. Among the remaining deficiencies in cellular or biologic skin substitutes are hypopigmentation, absence of
stable vascular and lymphatic networks, absence of hair follicles, sebaceous and sweat glands, and incomplete
innervation. Correction of these deficiencies depends on regulation of biologic pathways of embryonic and fetal
development to restore the full anatomy and physiology of uninjured skin. Elucidation and integration of
developmental biology into future models of biologic skin substitutes promises to restore complete anatomy and
physiology, and further reduce morbidity from skin wounds and scar. This article offers a review of recent advances in
skin cell thrapies and discusses the future prospects in cutaneous regeneration.
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Background

Advances in burn care during the recent past have in-
cluded improvements in fluid resuscitation, early wound
excision, respiratory support and management of inhal-
ation injury, improved nutrition and modulation of the
hypermetabolic  response, infection control and
enhanced immune function, incorporation of aerobic ex-
ercise during recovery, and development of anti-scarring
strategies [1]. These advances have led to significant
reductions in mortality, hospital stay, and long-term
morbidity. In addition to these comprehensive innova-
tions, skin cell therapies have become part of the treat-
ment plan for extensive burns. This review will
summarize several of the most significant advances since
1980 and discuss prospects for further progress in cuta-
neous regeneration in the future.
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Medical needs

Cutaneous burns can generate a continuum of injuries
with increasing depth into the skin. Partial-thickness
burns often do not require grafting and, if debrided and
treated with antimicrobial dressings, will heal spontan-
eously from regrowth of epithelial appendages (hair folli-
cles, sebaceous and sweat glands) to cover the wounds.
However, deep partial-thickness burns which do not heal
within ~3 weeks and full-thickness burns require re-
placement of the epidermal barrier by transplantation of
autologous keratinocytes. Transplantation can be accom-
plished by either conventional split-thickness skin grafts
(STSG), applications of keratinocyte suspensions or
sheets, or dermal-epidermal skin substitutes [2-5].
Autologous keratinocytes may persist indefinitely and
provide permanent wound closure, whereas allogeneic
keratinocytes will remain on the wound for a few days
to weeks [6-8], delivering growth factors and extracellu-
lar matrix components to wounds that promote more
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rapid wound closure by autologous cells [9]. Combina-
tions of widely meshed and expanded (ie., 1:6) auto-
grafts or micrografts applied to excised, full-thickness
burns and covered with allograft [10, 11] have been re-
ported, but are slow to heal, allow granulation tissue to
form, and tend to scar. Conversely, unmeshed sheet
grafts applied as early as possible to critical areas (ie.,
face, hands, feet, perineum) have been shown to reduce
granulation tissue, minimize scar, and produce optimal
functional and cosmetic outcomes [2, 12, 13].

Biological requirements and current alternatives

Wound closure after full-thickness burns requires rees-
tablishment of stable epidermis as a minimum require-
ment. Stability of the epidermis depends on reformation
of the basement membrane and vascularized connective
tissues to anchor the outer skin to the body. Split-
thickness skin satisfies these requirements but does not
replace the epidermal adnexa (hair follicles, sebaceous
glands, sweat glands) or regenerate a full complement of
sensory or motor nerves. Table 1 summarizes the ana-
tomic features of uninjured skin compared to STSG,
engineered skin substitutes (ESS), and healed skin after
grafting. It is important to note that split-thickness skin
at the first harvest does not regenerate hair follicles, se-
baceous glands, or sweat glands but does contain pig-
mented melanocytes and vascular and neural networks
which the engineered skin does not. At the second and
subsequent harvests of autografts, pigmentation be-
comes irregular and scar is more pronounced. Com-
pared with autografts, autologous-ESS containing
cultured keratinocytes and fibroblasts may also contain
“passenger melanocytes” which may colonize the
wound and generate focal, but incomplete, pigmenta-
tion [14-16]. Of these deficiencies, perhaps the absence
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of sweat glands is most important to patients with large
total body surface area (TBSA) burns because it impairs
the ability to thermo-regulate properly.

Table 2 provides a partial list of acellular, temporary,
and permanent skin substitutes that are either available
commercially in the USA or in clinical trials. Acellular
skin substitutes recruit fibro-vascular tissues from the
wound bed and may consist of either biopolymers, such
as collagen and chondroitin-sulfate or elastin (Integra®
Dermal Regeneration Template [17]; MatriDerm®) [18],
decellularized human dermis (AlloDerm™) [19], deriva-
tized hyaluronic acid (Hyalomatrix®) [20], or polyureth-
ane (BioTemporizing Matrix, “BTM”) [21, 22]. Each of
these materials protects open wounds, promotes in-
growth of fibrovascular tissue, and may suppress granu-
lation tissue and scar. However, the biologic materials
(i.e, acellular dermis, collagen, hyaluronic acid) are
prone to microbial contamination in the absence of anti-
microbial agents due to their properties as biological
ligands for bacteria and degradation by enzymatic activ-
ities [23, 24]. In comparison, synthetic polymers (i.e.,
polyurethane, poly-glycolic/poly-lactic acids) are often
degraded by hydrolysis, have fewer microbial binding
sites, and are less prone to microbial contamination. If
used as dermal substitutes, the acellular materials may
require 2 to 4 weeks to vascularize sufficiently to sup-
port a STSG. However, if used as a scaffold for cell
transplantation, 2 weeks or longer for vascularization
would negatively impact cell survival and reduce cellular
engraftment and wound closure. Of the available acellu-
lar skin substitutes, Integra® currently has the broadest
usage for extensive, life-threatening burns and burn
scars in the USA [25] and has demonstrated very favor-
able outcomes [26, 27] since its introduction in 1996
[17]. Similar results have been described recently using

Table 1 Comparisons of cell types in native, engineered and grafted skin (adapted from [99])

Tissue type Cell type or structure Uninjured skin Split-thickness skin graft Engineered skin substitutes Healed skin after grafting

Epidermis Keratinocytes + + + +
Hair follicle + - - _
Sebocytes + - - _
Sweat gland + - - _
Melanocytes + + + +
Immune cells + + - +
Nerve + + _ 4

Dermis Fibroblasts + + + +
Endothelial cells + + - +
Extracellular matrix + + + +
Smooth muscle + + - +
Immune cells + + - +
Nerve + + _ +
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Table 2 Biologic skin substitutes, commercially available or in

clinical trial (adapted from [100])

Model [references] Composition

Indications for use

Acellular skin substitutes

Integra Dermal
Regeneration

Bovine collagen and
chondroitin-sulfate

Template coated with silicone
[17,101]

AlloDerm Decellularized human
[19,102] dermis

MatriDerm Bovine collagen

[103, 104] and elastin
Hyalomatrix Derivatized hyaluronic
[20, 105] acid

BioTemporizing
Matrix [22, 106]

Bilaminate degradable
polyurethane

Burns, reconstructive
surgery

Repair or replacement
of damaged or
inadequate
integumental tissue

Burns, reconstructive
surgery

Partial- and full-
thickness wounds

Burns, reconstructive
surgery

Temporary skin substitutes (dressings)

Burns, reconstructive
surgery

Burns, reconstructive
surgery

Diabetic foot ulcers

Partial-thickness burns

Diabetic foot ulcers

Cadaver Split-thickness skin
allograft from human donors,
[29, 107] unfrozen or
cryopreserved
Porcine Split-thickness porcine
xenograft skin, cryopreserved or
[31,32] lyophilized
Apligraf® Allo hF in collagen gel
[108, 109] plus stratified allo hK
StrataGraft® Allo hF in collagen gel
[33,110] plus stratified allo hK
DermaGraft® Allo hF on
[111,112] poly-galactin mesh
Permanent skin substitutes (grafts)
EpiCel® [34, 113] Cultured auto hK

multi-layer sheet

ReCell® [3, 114] Uncultured suspension

of auto hK, delivered

as a spray
Reconstructed Auto hF on acellular
skin [36, 115] scaffold of dermal
extracelluar matrix,
plus stratified auto hK
Autologous Auto hF on a collagen-

engineered skin
substitute [39, 116]

GAG scaffold, plus
stratified auto hK

Full-thickness burns

Partial-thickness burns

Full-thickness burns,
venous and mixed
ulcers

Full-thickness burns

the BTM material which currently remains in clinical

trial [22].

Cellular skin substitutes

Transplantation of cellular skin substitutes has had
wide-ranging results for temporary or permanent wound
coverage. Temporary cellular dressings include direct
harvest of split-thickness skin, available as either fresh or
cryopreserved human cadaver skin [28, 29], or porcine
skin with storage by chemical fixation or lyophilization
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[30-32]. In addition, allogeneic human fibroblasts and/
or keratinocytes have been combined with degradable
scaffolds (i.e., partially denatured collagen (Apligraf™;
StrataGraft™) [6, 33], poly-glycolic/poly-lactic acids
(DermaGraft™)) which deliver growth factors and extra-
cellular matrix to wounds to promote autologous healing
but do not persist more than a few days to weeks.
Autologous keratinocytes have been applied as cultured
cell sheets (EpiCel™) [34], sprayed cell suspensions pre-
pared during surgery (ReCell™) [35], with culture-
expanded fibroblasts as the dermal component [36], or
in combination with a polymeric dermal scaffold popu-
lated with autologous culture-expanded fibroblasts [37,
38]. Figure 1 shows the histologic organization of a
dermal-epidermal skin substitute, surgical application,
and results in a pediatric patient [39]. These
approaches have helped to reduce mortality in large
burns (>40% TBSA), but they lack hair follicles and
glands after transplantation. Limitations of keratinocyte
sheets have included poor durability and ulceration
[40, 41] and with sprayed keratinocyte suspensions a
requirement for co-application with widely meshed
skin autograft [42] which reduces the conservation
of donor skin and increases scarring after wound
closure.

Preclinical investigations have reported more com-
plex models that also include melanocytes [43-45],
microvascular endothelial cells [46-48], mesenchymal
stem cells [49-51], adipocyte stem cells [52], sensory
nerve cells [53], hair follicle progenitor cells [54—56], or
induced pluripotent stem cells (iPSCs) [57, 58]. Figure 2
shows restoration of natural skin color in human ESS
with isogeneic melanocytes grafted to immunodeficient
mice [59] and localization of melanocytes to their nor-
mal anatomic location at the basement membrane.
These kinds of models promote activation of biological
signaling pathways which may stimulate more rapid
and complete healing, or drive expression of additional
phenotypes to correct anatomic deficiencies. The pro-
spective benefits of progenitor cells may include gener-
ation of additional populations of differentiated
parenchymal cells (e.g., hair, sweat glands, nerve) in
engineered skin grafts. Figure 3 shows the expression of
hair in engineered skin containing neonatal murine skin
cells [54]. As biologic complexity increases and pheno-
types are restored, engineered tissues gain structures
and functions that do not result from mechanisms of
wound healing. These added properties may derive
from embryonic or fetal mechanisms that regulate tis-
sue morphogenesis, in addition to the mechanisms of
wound healing. Together, the combination of develop-
mental biology, wound healing, and biomedical engin-
eering constitute the emerging field of regenerative
medicine.
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Fig. 1 Clinical application of autologous engineered skin substitutes (ESS). a Histology of ESS shows a collagen-based polymer scaffold populated with
cultured dermal fibroblasts and epidermal keratinocytes. Scale bar=0.1 mm. b Surgical application of ESS on prepared wounds can be performed
using forceps and secured with staples. ¢ An African-American subject treated with ESS at 3 years of age shows predominant hypopigmentation.
d The same subject at 14 years of age has persistent hypopigmentation but has required no reconstruction of the ESS site. Scales in centimeters
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Fig. 2 Correction of pigmentation with cultured autologous melanocytes in preclinical studies. a Human engineered skin substitutes (ESS) on

immunodeficient mice showing hypopigmentation at 12 weeks after grafting. b Correction of hypopigmentation after 12 weeks by addition of
isogeneic human melanocytes to ESS. Scales in centimeters. ¢ Immunolabeling of epidermis with anti-cytokeratin (red) and the melanocyte-specific
maker, tyrosinase-related protein-1 (TRP-1; negative). d Immunolabeling of ESS with added melanocytes shows epidermis (red), and TRP-1-positive
melanocytes at the dermal-epidermal junction (white arrows) as in uninjured skin. Scale bars =50 um
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Fig. 3 Induction of hair follicles in vivo from neonatal dermal cells grafted to immunodeficient mice. a Human dermal fibroblasts and human
epidermal keratinocytes express no hair. b Neonatal murine fibroblasts and human neonatal keratinocytes express chimeric hair at 4 weeks after
grafting. Scales in cm. ¢ Higher magnification showing density of regenerated hair is similar to that on positive control mice. Scale=1 mm

Contemporary research and regenerative medicine
Although great progress has been made in reductions of
morbidity and mortality in management of burn
wounds, some of the most exciting advances remain
ahead. These prospective advances include, but are not
limited to, (a) complete restoration of skin anatomy and
physiology, (b) gene therapies for specific applications,
(c) automated and robotic fabrication of engineered
tissues to increase efficiencies and reduce costs, and (d)
quantification of wounds with non-invasive biophysical
instruments.

Table 3 Developmental pathways and regulatory factors for
cutaneous phenotypes (adapted from [100])

Cutaneous structures and
phenotypes

Regulatory pathways and factors

Ca** 117, 118]

Transglutaminase, loricrin [119, 120]
Essential fatty acids, stratum corneum
lipids [121, 122]

Integrins [123, 124]
FAK-Ras-MapK [60, 124]
PKB/Akt-ERK1/2 [125]

Wnt/B-catenin/DKK4/BMPs [60, 61]
EDA/EDAR [126, 127]
Sox-2, -21 [128, 129]

Rac1-Sox9-Lrig1 [61, 130]
Wnt; Blimp1; IHH; c-myc [131]
TGFB-1 [132]

Wnt/B-catenin [133]
EDA/EDAR/NF-kB [134]
DKK4, SHH [135]

c-kit/SCF; [136]
ET-3/EDNRB2 [137)
Sox-10/Mitf: Eph/EphR; [138]

c-jun [139]
Sox-2,-10 [55]
Oct-6; Krox-20; Pax 3 [140]

Sox-7,-17,-18 [141]
Mef2¢/B-catenin [142]
VEGF; HOXA9, VEZF1 [143]

PPARy [144]
Pref-1; Fabp4 [145]
Myf5; Ebf2; Prdm16; Pgc-1a [146]

EDA ectodysplasin, EDAR ectodysplasin receptor, TGFf-1 transforming growth
factor B-1, VEGF, vascular endothelial growth factor

Epidermal barrier

Dermal-epidermal junction

Hair follicle genesis and cycling

Sebaceous glands

Sweat glands

Pigmentation

Sensory and motor innervation

Cardiovascular system

Subcutaneous fat

Table 3 summarizes the anatomic and physiologic
properties that may be missing from split-thickness skin
autograft, ESS, or healed wounds after grafting. Among
these phenotypes are epidermal barrier, dermal-
epidermal junction, hair folliculogenesis and cycling, se-
baceous glands, pigmentation, sensory and motor in-
nervation, cardiovascular systems, and subcutaneous fat.
Each of these phenotypes results from specific gene ex-
pression pathways that regulate its formation. Examples
of these pathways are listed and referenced in the table.
It is noteworthy that some of the phenotypes share regu-
latory pathways, such as hair follicles and sweat glands
being regulated by wingless integration site of murine
mammary tumor virus (Wnt), B-catenin, ectodysplasin
(EDA), and its receptor (EDAR) [60, 61]. Similarly, there
are members of the Sry-regulated HMG box (Sox) family
of transcription factors that are expressed in formation
of hair (Sox-2, -21), sebaceous glands (Sox-9), pigmenta-
tion (Sox-10), innervation (Sox-2, -10), and cardiovascu-
lar development (Sox-7, -17, -18). Despite these
similarities, each pathway is expressed in a context of its
microenvironment (e.g., stem cells, extracellular matrix)
which also contributes to the genesis and stability of the
phenotype. Undoubtedly, as continuing studies in devel-
opmental biology elucidate these pathways, greater cap-
abilities to guide the anatomy and physiology of biologic
skin substitutes will be gained.

Gene therapies for the skin have been studied exten-
sively over the years and have met with limited success
[62-64]. Risks from use of retrovirus-based expression
systems suggest that lentiviral-mediated genetic modifi-
cations may have greater safety and efficacy in prospect-
ive studies [65, 66]. However, at least two examples of
gene therapy in skin substitutes are currently active in
the areas of innate antimicrobial peptides (e.g., cathelici-
dins, B-defensins) [67, 68] in allogeneic engineered skin
to promote healing of chronic wounds and collagen VII
for recessive dystrophic epidermolysis bullosa (RDEB)
[69, 70]. These approaches to gene therapies require
careful considerations for safety and efficacy in clinical
applications. Constitutive overexpression of human beta
defensin-3 with a non-viral plasmid DNA in an
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allogeneic model of a skin substitute has been evaluated
for microbial management of contaminated wounds and
was not tumorigenic [71]. These kinds of approaches
provide novel examples for wound management and
correction of congenital skin diseases and open count-
less opportunities for future reductions of morbidity and
mortality from skin wounds. The CRISPR/Cas9 system
for gene editing [72] offers an alternative for genetic
modification of cells without the associated risks of viral
vectors [73, 74].

In addition to unique compositions of cells, gene ex-
pression, and scaffolds to construct analogs of skin, a
critical and limiting factor to greater availability of skin
substitutes is manual fabrication of these complex mate-
rials. To address this limitation, numerous methods for
robotic fabrication of skin and other tissue substitutes
have been described [75]. Many of these approaches are
highly precise and involve extrusion of cell-populated
matrices into specific shapes for transplantation. For
skin models, techniques include multi-layering of mul-
tiple cell types [76], “ink-jet printing” [77], or transfer of
cell-matrix droplets onto a culture substrate by actuation
of a laser pulse [78]. Although these robotic systems ac-
complish physical transfers with relatively high effi-
ciency, they may injure cells by transient exposures to
high pressure, temperature, or chemical toxicities.
Importantly, cells suspended in viscous scaffolds may be
deprived of cellular attachments to cell surface receptors
(e.g., integrins, cadherins), resulting in irreversible prolif-
erative arrest and apoptosis [79]. Avoidance of these
kinds of growth inhibitions will be essential to the even-
tual success of robotic systems. It is important to
recognize that these kinds of attachment and signaling
deprivations do not occur during fetal morphogenesis or
wound healing. Therefore, providing tissue-specific li-
gands for cell surface receptors, or maintaining signaling
pathways that regulate proliferation, will likely be re-
quired to optimize the mitotic rates of cells in engi-
neered tissues. One approach to satisfying this
requirement is formation of cellular organoids [75]
which provide cell-cell attachments to preserve cell cycle
signaling without attachment of cells to scaffolds or
plastic vessels.

Assessments of skin wounds have progressed from
subjective examinations by clinicians to more objective
measures with non-invasive instruments for both diag-
nostic and prognostic evaluations. For diagnostic pur-
poses, scanning laser Doppler flowmetry has been
shown to provide accurate assessments of burn depth
and color with simultaneous image capture [80-82].
Accuracy in determining the TBSA of burns has also
been improved with computer software for digital map-
ping of skin injuries to better calculate critical interven-
tions such as fluid resuscitation. Three-dimensional
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photography and laser surface scanning [83, 84] provide
topographic data that may be coupled with body map-
ping to generate virtual representations of patients that
can be revised during the hospital course to construct a
timeline of clinical progress. Non-invasive instruments
for assessments of color, shape, surface texture, visco-
elastic properties, blood flow, temperature, pH, surface
hydration, and water vapor transmission have been
adapted from applications in dermatology for more ob-
jective determinations of scars [85]. Although these
kinds of instruments have high accuracy, they often pro-
vide assessments of individual points within fields of
wounds or scars which must be considered in sampling
plans for data interpretation. Because point measures
typically do not represent heterogeneous wounds, data
collection at multiple sites is needed to compensate for
the subjective selection of individual points to measure
within the treatment field. With these kinds of consider-
ations, application of non-invasive instruments for
wound assessments has been shown to correct for inter-
rater variability in ordinal or observational evaluations
of wounds and scars.

Regulatory environments and requirements
Safety and efficacy of skin substitutes are regulated in
the USA by the US Food and Drug Administration
(FDA). Biologic skin substitutes have increased in com-
plexity from models that replace either dermis or epider-
mis, to dermal-epidermal models, to those that deliver
combinations of biopolymer scaffolds, multiple cell
types, or multiple cell sources, to those that express gene
products for prospective improvements in wound heal-
ing. This spectrum of unprecedented materials presented
questions regarding the regulatory framework within
which each model would be evaluated for consideration
of permission to market. Traditionally, the FDA has con-
sisted of three centers for evaluation of human therapeu-
tics: the Center for Devices and Radiologic Health
(CDRH), the Center for Biologics Evaluation and Re-
search (CBER), and the Center for Drug Evaluation and
Research (CDER). Availability of cadaveric allograft has
been provided under regulations for tissue banking,
which are administered by CBER. As the spectrum of
research models of skin substitutes broadened during
the 1980s and 1990s, several investigative therapies
had components that required consideration by multiple
centers at FDA. The agency responded proactively
with two initiatives that have contributed to greater
clarity of the regulatory process and with Guidance
for Industry [86, 87] on how to propose a path to
market.

An early initiative was FDA’s participation in establish-
ment of definitions and standards for tissue-engineered
medical products (TEMPs) through formation of a
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Division IV of Committee F04 for medical devices
through the American Society for Testing and Materials
(ASTM) [88]. Beginning in 1997, this organization has
had members from academics, government, and industry
participating in a consensus process for composing defi-
nitions of materials and provision of methods for
calibration and testing of the materials. With regard to
skin substitutes, the ASTM process has resulted in a
Standard Guide for Classification of Therapeutic Skin
Substitutes [89], providing consensus definitions and
nomenclature. The second initiative was FDA’s establish-
ment in 2002 of the Office of Combination Products, by
which investigative therapies are reviewed initially for
their primary mode of action [90]. This office confers
with the Centers for Human Therapeutics to designate
new therapies at a lead center at FDA with participation
from other centers as appropriate. Together, these initia-
tives have added clarity to the assignment of novel thera-
peutics to a designated regulatory path [91]. In addition
to providing a framework for innovative investigative
therapies, FDA provides “expanded access” or “compas-
sionate use” permissions for treatment of selected condi-
tions that present high risks of mortality or morbidity to
patients [92, 93].

More recently, the 21st Century Cures Act (Cures
Act) was signed into law in the USA in December, 2016.
As the name implies, this law is intended to facilitate
and expedite the availability of novel therapies to pa-
tients with serious, or potentially life-threatening, condi-
tions. The Cures Act provides for expedited therapeutic
development programs including the Regenerative
Medicine Advanced Therapy (RMAT) designation for
eligible biologics products, and the Breakthrough
Devices program which is designed to facilitate the re-
view of certain innovative medical devices [94]. These
new designations by FDA are in addition to previous ex-
pedited regulatory pathways of Fast Track development
[95], Breakthrough Therapy designation [96], Acceler-
ated Approval [97], and Priority Review designation for
drugs [98]. Together, these alternative pathways to
provisional or full marketing are likely to increase access
to the most advanced therapies by patient populations
with the greatest medical needs.

Conclusions

Future prospects for biologic skin substitutes are exten-
sive and diverse. Advances in use and regulation of stem
cells in the skin are highly likely to lead to autologous
skin substitutes with greater homology to uninjured skin
by providing restoration of skin pigmentation, epidermal
appendages (hair, sebaceous and sweat glands), a vascu-
lar plexus, and subcutaneous tissues. Genetic modifica-
tion of autologous cells opens tremendous opportunities
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for regulation of wound closure, reductions in scar for-
mation, and correction of congenital diseases. As these
advances in biologic skin substitutes translate into
clinical care, it can be predicted with confidence that re-
ductions in morbidity from acquired and congenital skin
diseases will also be realized.
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