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Abstract

Vitamin D deficiency is common among the general population. It is also observed in up to 76% of critically ill patients.
Despite the high prevalence of hypovitaminosis D in critical illness, vitamin D is often overlooked by medical staff as
the clinical implications and consequences of vitamin D deficiency in acute contexts remain to be fully understood.
Vitamin D has a broad range of pleotropic effects on various processes and systems including the immune-
inflammatory response. 1α,25-dihydroxyvitamin D (1,25(OH)2D), has been shown to promote a tolerogenic immune
response limiting deleterious inflammatory effects, modulation of the innate immune system, and enhancement of
anti-microbial peptides. Vitamin D deficiency is frequently observed in critically ill patients and has been related to
extrinsic causes (i.e., limited sunlight exposure), magnitude of injury/illness, or the treatment started by medical doctors
including fluid resuscitation. Low levels of vitamin D in critically ill patients have been associated with sepsis, organ
failure, and mortality. Despite this, there are subpopulations of critical illness, such as burn patients, where the literature
regarding vitamin D status and its influence on outcomes remain insufficient. Thermal injury results in damage to both
burned and non-burned tissues, as well as induces an exaggerated and persistent immune-inflammatory and
hypermetabolic response. In this review, we propose potential mechanisms in which burn injury affects the vitamin D
status and summarizes current literature investigating the influence of vitamin D status on outcomes. In addition, we
reviewed the literature and trials investigating vitamin D supplementation in critically ill patients and discuss the
therapeutic potential of vitamin D supplementation in burn and critically ill patients. We also highlight current
limitations of studies that have investigated vitamin D status and supplementation in critical illness. Thermal injury
influences vitamin D status. More studies investigating vitamin D depletion in burn patients and its influence on
prognosis, via standardized methodology, are required to reach definitive conclusions and influence clinical practice.
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Background
Vitamin D insufficiency and deficiency is common in
the general population [1] and can be present at up to
76% in critically ill patients [2]. This is concerning as
vitamin D is increasingly recognized for its wide-ranging
biological effects, including modulation of bone metab-
olism and muscle mass, enhancing immune function
and cardiovascular effects [3, 4]. Despite these roles, the

clinical implications of hypovitaminosis D remain partially
understood and therefore often overlooked in acute clin-
ical contexts including burns and trauma. The literature
investigating vitamin D deficiency and its consequences in
adult burn patients is limited. Following thermal injury,
patients are at prone to develop low vitamin D levels, the
impact on short and long-term outcomes of which are
relatively unknown.
This review aims to discuss current understanding of

vitamin D and its role in critically ill patients, the effect
of burn injury on vitamin D status, the influence of
vitamin D levels on outcomes in burn patients, the
therapeutic potential of vitamin D, and current know-
ledge gaps.
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Review
Overview of vitamin D axis
Sunlight and nutrition, including dietary supplementa-
tion, are the main sources of vitamin D in humans. Solar
ultraviolet B radiation infiltrates the skin converting 7-
dehydrocholesterol (7-DHC) to pre-vitamin D3 (pre-D3),
which is subsequently converted to vitamin D3 [4–6].
Vitamin D (D2 and D3) is also found naturally in certain
foods (oily fish, mushrooms, egg yolk) and fortified food
products, including cereals, cheese, and milk [4, 5]. Vita-
min D from the skin and diet is then transported to the
liver bound to vitamin D-binding protein (VDBP) and
albumin, where it is hydroxylated to 25-hydroxyvitamin
D (25(OH)D) [4–6]. This is used to determine a patient’s
vitamin D status. 25(OH)D is then metabolized by the
enzyme 25-hydroxyvitamin D-1αhydroxylase (CYP27B1)
in the kidneys to the active form of vitamin D, 1α,25-
dihydroxyvitamin D (1,25(OH)2D) [4–6], which is then
transported to various target cells and tissues where it
interacts with intracellular vitamin D receptors (VDRs)
to exert transcriptional effects. In addition to the kid-
neys, various extra-renal sites (such as macrophages) are
reported to contain CYP27B1 permitting direct metabol-
ism of 25(OH)D to exert pleotropic effects via autocrine
means [7] (Fig. 1).

Overview of vitamin D biological effects
Classically, vitamin D is associated with musculoskeletal
health by maintaining calcium homeostasis and bone
mineralization, decreasing the risk of muscle weakness,
osteopenia, osteoporosis, and fractures [4, 7]. Vitamin D
exerts most of its physiological effects via 1,25(OH)2D
which when bound to its cognate nuclear VDR is able to
act as a transcription factor in concert with its retinoid
X receptor heterodimer partner [8, 9]. Gene expression
analysis of 53 different tissues from over 500 human do-
nors has shown VDR gene expression in more than half
of samples including the adipose tissue, adrenal glands,
bladder, colon, fibroblasts, kidney, liver, lung, lympho-
cytes, pituitary glands, and skin [10, 11]. Accordingly,
vitamin D actions are not limited to the skeletal system.
The effects of vitamin D on various cell types and tissues
are summarized in Table 1.
Of relevance to this review, vitamin D has a broad

range of beneficial effects on the immune system [12].
An association between the adaptive immune system
and vitamin D status was initially observed when VDR
levels were shown to be enhanced in activated T and B
cells [13]. In VDR-expressing T cells, 1,25(OH)2D pro-
motes a tolerogenic immune response by favoring Th2
and Treg cell differentiation over the more inflammatory
Th1 and Th17 cells, thereby limiting deleterious inflam-
matory activity [14–18]. Other immune-modulatory ef-
fects of vitamin D include differential modulation of the

response of the innate immune system (monocytes, mac-
rophages and dendritic cells) [19] with upregulation of
anti-microbial peptides such as cathelicidin and β-
defensin 2 from various cells including human keratino-
cytes and intestinal epithelial cells [20, 21], enhancement
of autophagy of intracellular microbes [22], and regulation
of antigen-presentation in dendritic cells, monocytes and
macrophages to facilitate a non-exaggerated immune re-
sponse [23]. Crucially, antigen-presenting cells from the
innate immune system express the vitamin D-activating
enzyme CYP27B1 and are therefore able to metabolize
25(OH)D in a tissue-specific fashion [24]. This “intracrine”
mode of 25(OH)D metabolism appears to be the principal
mechanism by which vitamin D is able to regulate T cell
function [25] and provides a mechanism by which vitamin
D deficiency (low serum 25(OH)D) can influence immune
function. The various effects of vitamin D upon the im-
mune response are summarized in Table 1.
DBP and albumin are the main transporters of vitamin

D. However, sterol-binding capacity is not the only attri-
bute of DBP and albumin. Multiple roles of DBP have

Fig. 1 Overview of the vitamin D axis
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been described including actin scavenging, binding of
fatty acids and endotoxins, modulation of immune and
innate immune responses, and influence on bone me-
tabolism via DBP-macrophage activating factor [26].
Albumin has been reported to exert antioxidant, immune-
modulatory, and anti-inflammatory effects, as well as anti-
biotic transportation and endothelial stabilization [27, 28].

Vitamin D in critically ill and trauma patients
Considering the pleotropic effects of vitamin D, its role in
the severely ill has been a subject of growing interest.
Thousands of patients are admitted to intensive care units
(ICUs) each year [29], and up to 77% of critically ill pa-
tients have vitamin D deficiency [2, 30–33]. Alizadeh et al.
reported that 74% of critically ill surgical patients exhib-
ited vitamin D deficiency [34]. Similarly, Dickerson et al.
reported that 76% of critically ill patients following trau-
matic injury were vitamin D deficient or severely deficient
[2]. In such contexts, it is important to recognize patient
demographic factors that may be associated with
vitamin D deficiency including age, ethnic group (skin
pigmentation), obesity, medical history (such as malab-
sorption pathologies and liver/renal disease), season,
latitude, and time of day [4]. However, it is also vital to
comprehend that vitamin D deficiency may itself be a
consequence of illness.
Low serum 25(OH)D levels has shown a significant asso-

ciation with the magnitude of the critical illness and sys-
temic inflammatory response syndrome (SIRS) [33, 35, 36].
The well-documented immunomodulatory effects of
1,25(OH)2D suggest that vitamin D deficiency may be
a causative factor for critical illness and resulting
morbidity and mortality. The observed vitamin D de-
ficiency in critically ill and trauma patients may be
due to diminished epidermal vitamin D production
secondary to limited sunlight exposure and malnutrition, as
well as enhanced conversion of 25(OH)D to active
1,25(OH)2D to meet increased tissue demand, notably to
promote 1,25(OH)2D-mediated immunoregulatory effects

Table 1 Effects of vitamin D on various human cell types and
tissues

Target cells/
tissues

Effects of vitamin D Reference

Adipocytes • Inhibits intracellular fat accumulation
• Enhances basal lipolysis without cell
toxicity

• Upregulation of β-oxidation-related
genes, lipolytic enzymes, and vitamin
D-responsive genes

• Increased levels of nicotinamide
adenine dinucleotide and sirtulin
1 expression

[105]

Cardiomyocytes • Inhibition of cell proliferation
without apoptosis

• Downregulation of expression of
genes associated with cell cycle
regulation

• Promotes cardiomyotube formation
• Induces cardiac differentiation

[106, 107]

Hepatocytes • Protects against insulin resistance
• Downregulates fibrogenic TGF-β
signaling

• Anti-inflammatory effects by
inhibiting monocyte activation
and TNF-α and IL-1 expression

[108–110]

Myocytes • Modulation of calcium homeostasis
and influx

• Induces cellular proliferation and
differentiation

• Protects against insulin resistance
• Stimulation of arachidonic acid
mobilization

[111, 112]

Nephrocytes • Upregulation of cellular metabolic
activity, IL-6, and reactive oxygen
species

• Restoration of transepithelial barrier
function

[113]

Neurons • Neuroactive steroid modulating
spontaneous regular firing, actin
potential duration, and intrinsic
excitability

• Enhances sensitivity to
neurotransmitters and
neurotransmitter receptors

• Upregulation of neuronal
growth factors, neurotrophin 3,
and glial cell line-derived
neurotrophic factor

[114, 115]

T cells • Inhibits Th1/Th17 chemokine/
cytokine secretion (CXCL-10, IFN-γ,
TNF-α, and IL-17)

• Enhances Th2 cytokine release
(IL-4 and IL-5)

[17, 116]

B cells • Downregulates the proliferation of
memory B cells

• Inhibits plasma cell differentiation
• Reduces Ig production

[117]

Antigen-
presenting cells

• Inhibits the expression of class II
MHC molecules (HLA-DR)

• Inhibition of co-stimulating molecule
expression (CD80, CD83, and CD86)

• Augments chemotaxis and phagocytosis
of monocytes

• Downregulates the maturation of
dendritic cells

[118–121]

Table 1 Effects of vitamin D on various human cell types and
tissues (Continued)

Target cells/
tissues

Effects of vitamin D Reference

• Induces tolerogenic dendritic
cells capable of inducing Treg cells

• Inhibits IL-12 p70 release
• Decreases macrophage-
stimulated pro-inflammatory
cytokine production (IL-1, IL-1β,
IL-6, IL-8, MCP-1, and RANTES)

NK cells • Inhibition of NK cell development
and differentiation

• Reduced INF-γ and cytotoxicity

[122]

TGF-β Transforming growth factor-β, TNF-α Tumor necrosis factor, IL Interleukin,
IFN-γ Interferon-γ, MCP-1 Monocyte chemotactic protein 1, NK Natural killer
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[37]. Finally, critical illness, notably in the setting of inflam-
mation, may promote enhanced catabolism of 25(OH)D
and 1,25(OH)2D to downstream metabolites via the enzyme
24-hydroxylase (CYP24A1) [38]. Interpretation of circulat-
ing vitamin D levels in critical illness is further complicated
by the fact that critically ill patients usually require major
fluid resuscitation resulting in low levels of 25(OH)D and
1,25(OH)2D secondary to acute fluid shifts and hemodilu-
tion [39]. Vitamin D concentration in critically ill pa-
tients post-resuscitation may take, at least, a few days
to recover [39]. Secondly, VDBP and albumin levels fall,
as part of the systemic inflammatory response, reducing
plasma levels of 25(OH)D significantly [40–42]. This
appears to be the case in the acute phase of the re-
sponse to injury. Furthermore, disruption of the vita-
min D axis in ICU patients can be attributed to hepatic,
parathyroid, and renal dysfunction, as well as reduced
end organ resistance [43].
Clinical studies have associated low levels of circulat-

ing vitamin D with various poor outcomes in critically ill
patients including sepsis [44, 45], organ failure [46, 47],
and short- and long-term mortality [30, 44, 46, 48, 49].
Similar findings have also been reported among both
critically ill surgical or trauma patients. For example,
low vitamin D levels correlated with higher infection
rates, length of stay, duration of organ dysfunction, ICU
readmission, surgical intensive care treatment costs, and
mortality [50–53]. However, such associations are not
universal; other observational studies have reported
no association between vitamin D deficiency, sepsis,
and mortality [54, 55], as well as other ICU outcomes
such as duration of ventilation and length of stay
[56]. Despite this, several meta-analysis studies have
concluded that vitamin D deficiency is associated with
significantly increased susceptibility to infections and
sepsis, as well as greater incidence of mortality in
critically ill patients [57–59].

Burn injury pathophysiology and its impact on vitamin D
levels
Critically ill populations are clearly identified to be at risk
of vitamin D deficiency, but there are sub-populations
where there is insufficient literature on the status of vitamin
D and its influence on outcomes, including patients with
thermal injuries. Although studies investigating vitamin D
levels in burns patients are scarce, vitamin D levels have
been shown to decrease following thermal injury [60, 61].
This may be both as a primary effect of the injury or
secondary response to the injury itself and/or the clinical
management initiated such as fluid resuscitation and use of
pressure garments.
Burn is a severe form of injury associated with a

marked pathophysiological immune-inflammatory re-
sponse. Thermal injury induces a unique “genomic

storm” altering 80% of the leukocyte transcriptome lead-
ing to prolonged simultaneous and rapid stimulation of
innate (both pro- and anti-inflammatory genes) and sup-
pression of adaptive immune responses [62]. Clinical
studies have recently characterized the immune response
following burn injury demonstrating prolonged neutro-
phil dysfunction and release of immature granulocytes
lasting up to 28 days [63], reduced numbers and im-
paired expression of CD14 +/HLA-DR + monocytes per-
sisting up to 30 days [64], and downregulation of NKG2D
(a natural cytotoxicity receptor in natural killer cells)
ligands resulting in immunosuppression [65]. The presence
of concurrent upregulation of granulocyte-macrophage
colony-stimulating factor (GM-CSF), interleukin (IL)-10,
and other cytokines following injury indicates an over-
compensating response by the body [66], which may last
for up to 3 years post-burn [67].
Thermal injury is associated with a hypermetabolic

response. The metabolic changes in burn injury and
other forms of trauma are similar but differ in magni-
tude and persistence. These changes are characterized as
a two-phase response: the “ebb” phase within 48 h where
metabolism, cardiac output, and oxygen consumption
are reduced, followed by the “flow” phase at approximately
120 h post-injury where these parameters increase and
plateau [68]. This metabolic response involves peripheral
lipolysis and free fatty acid [69] oxidations leading to
acute, global, and complex increase in serum FFA levels
[70]; browning of subcutaneous white adipose tissue [71];
systemic induction of endoplasmic reticulum (ER) stress
and unfolded protein response [72]; and up to a sixfold in-
crease in breakdown rates of skeletal muscle protein [73].
It is estimated that severe burns cause a surge of resting
energy expenditure up to 140% [74], which can be pro-
longed [67]. This persistent hypercatabolic, hyperinflam-
matory response leads to wasting of the patient’s tissues
and organ, ultimately leading to poorer outcomes.
In addition, fluid and proteins are translocated into

burned and non-burned tissues leading to hypovolemia,
damaging tissues through direct and indirect means
[75]. The extent of which is reflected by elevated levels
of damage-associated molecular patterns (DAMPs) such
as high-mobility group box protein 1 following burn in-
jury [76, 77]. There is also disruption of local and systemic
vascular permeability via the margination of immune cells
including neutrophils, macrophages, and lymphocytes, as
well as various inflammatory mediators [78]. This ultim-
ately leads to an instant shift of intravascular fluid to the
interstitial space. To address this issue and circumvent the
consequences of hypo/hypervolemia, multiple formula-
tions have been established throughout burn care history
to optimize fluid resuscitation [79].
Severe burn injury thus induces persistent disturbances

of multiple immuno-inflammatory and physiological
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responses simultaneously, befitting the designation: per-
sistent inflammation, immunosuppression, and catabolism
syndrome, PICS [80]. This includes reduced circulating
levels of vitamin D and its carrier proteins, VDBP and al-
bumin [61]. Based on literature concerning non-burn and
burn trauma, we propose that this can be explained
through a variety of potential mechanisms: First, as previ-
ously postulated [37], there may be attempts to maintain
immune homeostasis via increased conversion of 25(OH)
D to active 1,25(OH)2D, thereby reducing circulating
25(OH)D levels. In individuals who are vitamin D-
sufficient prior to injury, this effect may have a negligible
impact on serum 25(OH)D status, but for those who are
vitamin D-deficient at injury, this effect may lead to ex-
acerbation of low serum 25(OH)D concentrations; second,
fluid resuscitation and a compromised vascular integrity
results in decreased serum levels of vitamin D and its me-
tabolites secondary to hemodilution and fluid shifts [39].
VDBP and albumin are also affected in the acute response,
thereby reducing bound vitamin D levels and impacting
its delivery to target tissues [40–42]. This phenomenon of
binding protein extravasation would be temporary as
microvascular integrity is re-established 6 h following
thermal injury [81]. Third, VDBP levels are reduced in the
acute stage buffering actin’s deleterious effects as part of
the actin scavenging system [69, 82].
Although unknown, it appears that VDBP levels re-

cover during the acute phase of thermal injury [83],
while albumin levels may recover as early as 6 months
[84]. Due to this multiplicity of factors, interpretation of

25(OH)D levels and diagnosing vitamin D deficiency in
burn patients remain challenging [85].
Vitamin D levels following severe thermal injury can

also be reduced secondary to extrinsic causes including
prolonged in-hospital stay (including ICU), prolonged
immobilization, and lack of supplementation. Although
critically ill burn patients receive oral or enteral feed
supplements, current regimens have proved ineffective
in replenishing vitamin D levels in the acute phase [60].
Furthermore, current long-term burn management regi-
mens involve scar management comprising mainly of
sun avoidance and protection, as well as the use of pres-
sure garments. These factors minimize sun exposure,
hence reducing 25(OH)D levels. In addition, both burn
scar and adjacent normal skin in burn patients exhibit
subnormal conversion levels of 7-DHC to pre-D3 com-
pared to healthy individuals [86]. This further potentiates
vitamin D deficiency, resulting in low levels of 25(OH)D
and 1,25(OH)2D for many years, at least seven, following
burn injury [87]. The potential causes of hypovitaminosis
D following injury are summarized in Fig. 2.

Influence of vitamin D status on outcomes in burn
patients
Low vitamin D levels in patients with minor burns, me-
dian TBSA of 5%, have been associated with increased
length of hospital stay [88]. Although not statistically
significant, the authors also observed higher complication
rates in burn patients with low vitamin D including sepsis,
pneumonia, cardiovascular complications, and graft loss

Fig. 2 Potential causes of vitamin D deficiency following injury
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[88]. It is important to note that low vitamin D status in
this study cohort most likely represents the population’s
pre-injury 25(OH)D levels rather than a consequence of
the burn. Furthermore, this study has some limitations.
Thirty percent of the cohort was admitted to the ICU with
relatively minor injuries, which is unusual. No description
of patient pre-morbid state or other pathologies were re-
ported which may potentially affect vitamin D status or
outcomes in general. In addition, the cohort is comprised
mostly of minor partial thickness thermal injuries limiting
its application in severe burns. There are no reports inves-
tigating the influence vitamin D levels on short-term out-
comes of major burn patients.
Low serum levels of vitamin D in major burn patients

have shown to persist for at least 1 year [83]. Long-term
outcomes assessed include bone mineral density and leg
muscle strength. Although not statistically significant,
quadriceps muscle strength was lower at month 12 than
the month of injury in burn patients with low vitamin D
levels [83]. Another long-term consequence of major
thermal injury is scarring. A cross-sectional study has re-
ported a strong negative correlation between circulating
25(OH)D levels at year 1 post-injury and subjective scar
measures (modified Vancouver scar scale) [89]. Both
studies were limited by small sample sizes. There are no
other studies investigating the influence of vitamin D on
long-term outcomes of burned adult patients.
Studies have reported increased incidence of long bone

fractures among children with major burns following
discharge [90]. This is most likely attributed to reduced
bone mineral density and vitamin D levels [87, 91].
Vitamin D supplementation in pediatric burn patients
may be beneficial in reducing fracture risk [91].

Therapeutic potential of vitamin D supplementation
Vitamin D3 supplementation may be associated with
decreased mortality in the general population [92]. In
addition, vitamin D status has been associated with adverse
outcomes in the critically ill. Despite this, there are only a
few clinical studies that have evaluated vitamin D supple-
mentation in critically ill patients. In 2014, Amrein et al.
conducted the largest randomized controlled trial (RCT) to
date investigating the influence of a high-dose bolus enteral
vitamin D3 supplementation on outcomes of 475 critically
ill medical and surgical adult patients with vitamin D
deficiency (≤ 20 ng/mL), the VITdAL-ICU trial [93]. The
authors concluded that high-dose vitamin D3 did not re-
duce hospital length of stay, hospital mortality, or 6-month
mortality [93]. However, they observed lower hospital mor-
tality following subgroup analysis of patients with severe
vitamin D deficiency (≤ 12 ng/mL) at baseline [93]. A sys-
tematic review and meta-analysis of 7 RCTs (716 patients)
concluded that vitamin D administration was associated
with decreased mortality in critically ill patients without

serious adverse events [94]. Interestingly, another recent
meta-analysis of 6 RCTs (695 patients) reported no im-
provement on outcomes in critically ill patients supple-
mented with vitamin D [95]. The difference between these
two studies is related to inclusion and exclusion of various
trials in the analysis. Other potentially important con-
founders in both studies are the inclusion of trials in-
vestigating cholecalciferol (vitamin D) and calcitriol
(1,25(OH)2D) using various dosing regimens that were
administered through different routes (enteral and intra-
venous). Furthermore, the VITdAL-ICU trial has a larger
cohort than all the other RCTs combined and therefore
has major influence in the statistical analysis. These trials
are summarized in Table 2.
Rousseau et al. have shown improved muscle recovery

and strength in burn patients supplemented with vita-
min D and implied that vitamin D supplementation had
positive effects on muscle health and may play a role
during rehabilitation [83]. This is the only study investi-
gating the therapeutic potential of vitamin D following
thermal injury. This lack of interventional studies could
be due to a variety of reasons. First, as detailed earlier in
this review, interpretation of vitamin D status has
proven difficult owing to fluid shifts and low protein
levels occurring in the acute response. It is assumed that
binding protein levels return to normal 1 year post-
injury, and therefore, “true” vitamin D status can be
analyzed and managed [96]. Second, vitamin D defi-
ciency in burn patients is believed to be a long-term
issue [96], requiring a lengthy trial intervention. Third,
there is still considerable debate about what vitamin D
dosing regimen is optimal for supplementation studies
as therapeutic benefit in relation to target serum concen-
trations of vitamin D remains unclear. In a recent meta-
analysis of the effects of vitamin D supplementation on
acute upper respiratory infection, positive response to
vitamin D supplementation was only observed in patients
receiving lower dose daily or weekly supplementation
rather than monthly high-dose boluses of vitamin D [97].

Current knowledge gaps and limitations to progress
Clinical trials investigating the effects of vitamin D sup-
plementation on vitamin D status and outcomes in burn
and other critically ill patients are scarce. Correction of
vitamin D depletion in burn patients may prove benefi-
cial, and further studies investigating the therapeutic
potential of vitamin D should be encouraged.
A major limitation of this type of study is the differ-

ent techniques used to analyze vitamin D levels in pa-
tients and the specific vitamin D metabolites measured
in each instance. Methods used to quantify the most
commonly analyzed vitamin D metabolite—25(OH)D—in-
clude immunoassay (IA), high-performance chroma-
tography (HPLC) or liquid chromatography tandem–mass
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spectrometry (LC-MS/MS). IA measurements are subject
to matrix effects, such as hemodilution, and therefore may
not be as accurate [98]. Additionally, several IA methods
cannot distinguish between the two main forms of vitamin
D (vitamin D3 and vitamin D2), and cross-reactivity of
vitamin D3 and other vitamin D metabolites can occur [99].
Vitamin D measurements by IA can also be influ-
enced by VDBP concentration, thereby reducing its
reliability [100]. LC-MS/MS involves chromatographic
separation and mass transition differences of mole-
cules allowing the differentiation of analytes, thereby
increasing selectivity and sensitivity.
Due to differences in the sensitivity of each technique,

the data generated may vary in accuracy and reproducibil-
ity. Therefore, analyzing and interpreting data obtained
using different methodologies in various studies may not
be possible. With this in mind, LC-MS/MS has proven to
be the only platform offering an accurate, reliable, and re-
producible method for quantification of serum 25(OH)D
[99], including studies involving critically ill patients [101].
However, as outlined above, several other vitamin D me-
tabolites, notably active 1,25(OH)2D, are likely to play a
key role in the physiological activity of vitamin D in critic-
ally ill patients. Thus, new analytical strategies are re-
quired that incorporate simultaneous measurement of
several vitamin D metabolites. LC-MS/MS protocols have
been developed allowing accurate simultaneous analysis of
various vitamin D metabolites in serum [102]. In addition,
new protocols have been developed for the measurement
of “free” (VDBP-unbound) 25(OH)D [103]. This bioavail-
able form of 25(OH)D is thought to play a crucial role in
mediating immunomodulatory responses [104]. In future
studies of vitamin D and critical illness, it will be import-
ant to incorporate all these new technologies.

Conclusion
Thermal injury and critical illness influence vitamin D
levels. Although data are scarce, vitamin D is most fre-
quently found to be deficient in these patients and may po-
tentially influence short- and long-term outcomes in burn
patients and the critically ill. Further studies investigating
vitamin D depletion in burn patients and its influence on
prognosis, via standardized methodology such as LC-MS/
MS, are necessary to reach definitive conclusions and influ-
ence clinical practice. Although two major RCT trials, VIO-
LET (NCT03096314) and VITdAL-PICU (NCT02452762),
investigating vitamin D supplementation are active, re-
cruited patients will only be given a one-off high dose of
vitamin D. More RCTs using “optimal” vitamin D regimens
in well-stratified patients are required to determine the util-
ity and risk-benefit ratio of supplementation. These studies
are essential to stimulate further clinical and scientific
research assessing vitamin D phenomenon in critical care

settings, which would be pivotal in determining the need
for change in clinical practice.
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