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Abstract

Background: Triage trauma scores are utilised to determine patient disposition, interventions and prognostication
in the care of trauma patients. Heart rate variability (HRV) and heart rate complexity (HRC) reflect the autonomic
nervous system and are derived from electrocardiogram (ECG) analysis. In this study, we aimed to develop a model
incorporating HRV and HRC, to predict the need for life-saving interventions (LSI) in trauma patients, within 24 h of
emergency department presentation.

Methods: We included adult trauma patients (≥ 18 years of age) presenting at the emergency department of
Singapore General Hospital between October 2014 and October 2015. We excluded patients who had non-sinus
rhythms and larger proportions of artefacts and/or ectopics in ECG analysis. We obtained patient demographics,
laboratory results, vital signs and outcomes from electronic health records. We conducted univariate and multivariate
analyses for predictive model building.

Results: Two hundred and twenty-five patients met inclusion criteria, in which 49 patients required LSIs. The LSI group
had a higher proportion of deaths (10, 20.41% vs 1, 0.57%, p< 0.001). In the LSI group, the mean of detrended fluctuation
analysis (DFA)-α1 (1.24 vs 1.12, p= 0.045) and the median of DFA-α2 (1.09 vs 1.00, p = 0.027) were significantly higher.
Multivariate stepwise logistic regression analysis determined that a lower Glasgow Coma Scale, a higher DFA-α1 and
higher DFA-α2 were independent predictors of requiring LSIs. The area under the curve (AUC) for our model (0.75, 95%
confidence interval, 0.66–0.83) was higher than other scoring systems and selected vital signs.

Conclusions: An HRV/HRC model outperforms other triage trauma scores and selected vital signs in predicting the need
for LSIs but needs to be validated in larger patient populations.
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Background
Trauma is well reported to be one of the leading causes of
death amongst patients under the age of 45 [1, 2]. Trauma
care and subsequent outcomes are time-sensitive, and pro-
viding early definitive care significantly decreases mortality
[3, 4], making these patients an important demographic of

focus for emergency physicians and first line healthcare
professionals. Proper triage can be the difference between
life and death in these scenarios, in both pre-hospital and
emergency department care. Pre-hospital triage has proven
to be important, with adequate trauma centre referrals low-
ering the overall risk of death by up to 25% [5, 6]. Emer-
gency department triage also ensures critical life-saving
interventions can be provided to those who need it the
most. To aid personnel in these time-scarce moments,
trauma scores have been developed for both pre-hospital
triage [5] and emergency clinical decision-making [4].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: liu.nan@duke-nus.edu.sg
2Health Services Research Centre, Singapore Health Services, Academia, 20
College Road, Singapore 169856, Singapore
3Duke-NUS Medical School, National University of Singapore, Singapore,
Singapore
Full list of author information is available at the end of the article

Kumar et al. Burns & Trauma            (2019) 7:12 
https://doi.org/10.1186/s41038-019-0147-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s41038-019-0147-2&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:liu.nan@duke-nus.edu.sg


Several trauma scores have been developed over the
years. The first adopted scores were the Trauma Score
(TS) [7], which is based on physiological parameters,
and the Injury Severity Score (ISS) [8], which is based
on the degree of anatomical injuries as described by the
Abbreviated Injury Scale (AIS) [9]. There was then in-
creased recognition that the physiological derangements
in trauma patients were capable of drastically influen-
cing their outcomes, leading to the amalgamation of
physiological and anatomical parameters, such as in the
Trauma Injury Severity Score (TRISS) [7, 10, 11]. The
addition of physiological components gained widespread
popularity as they provided further insight into the abil-
ity to predict outcomes such as mortality after trauma
[12–15]. Stand-alone physiological scores emerged for
easy utilisation in the field and emergency room setting,
compared to the complex and time-consuming nature of
anatomical scores [16].
Over the past few decades, new scoring systems have

emerged such as the Mechanism, Glasgow Coma Scale
(GCS), Age, Arterial Pressure (M-GAP) score [5, 17], GCS,
Age and Systolic Blood Pressure (GAP) score [4], and the
Modified Early Warning Score (MEWS) [18]. Their similar-
ities lie in the ease of computing these scores in terms of
easily available vital parameters and clinical scores, and
hence have a clear advantage over anatomical trauma scores.
Amongst physiological trauma scores, the Triage-Revised
Trauma Score (T-RTS) [3] is the most popular.
Heart rate variability (HRV) and heart rate complexity

(HRC) are electrocardiogram (ECG) derivatives that act
as a measure of autonomic dysfunction, which have been
explored in recent studies. HRV and HRC are based on
RR interval variations [19], which refer to the variation
between heartbeats, with lower HRV/HRC parameters
being linked to increased mortality and morbidity in
trauma [19–22]. Gauging the extent of autonomic dys-
function can have a direct impact on the treatment and
care in these trauma patients, who may otherwise have
normal or only slightly deranged vital signs, due to
physiological compensatory mechanisms. When these
compensatory mechanisms fail, and conventional vital
signs crash, it is usually due to cardiovascular decom-
pensation, and may be too late to intervene [23]. This
unique quality of HRV/HRC analyses has led to interest
in its application in pre-hospital triage and emergency
clinical decision making; interest which has been bol-
stered by a recent study showing that a model combin-
ing HRV/HRC parameters and traditional vital signs
outperformed vital signs alone at predicting the need for
life-saving interventions (LSIs) and mortality [24]. HRV/
HRC analyses give us insight into the physiological func-
tion of patients; physiological function is then directly
correlated to the severity of injury and correspondingly,
the need for LSIs.

In this study, we aim to close the gaps in knowledge
regarding the relevance of real-time HRV/HRC analysis
in the emergency department setting for critical decision
making, by studying if previously reported real-time
HRV/HRC analyses results are reproducible in our
population. HRV/HRC analysis has not seen wide imple-
mentation yet, and our study aims to explore reasons for
and against such implementation. We aimed to develop
a model incorporating HRV and HRC to predicting the
need for LSIs within 24 h of emergency department
presentation and compare it with several triage trauma
scores (T-RTS, MGAP, GAP, MEWS) and selected vital
signs with a hypothesis that our unique model will out-
perform other pre-existing triage trauma scores.

Methods
Patients recruitment
The Singapore General Hospital (SGH) is a tertiary care,
public hospital in Singapore, classified as a Level 1
trauma centre, with round-the-clock emergency medi-
cine specialist coverage and trauma activation code
team. Emergency medical services are provided by the
Singapore Civil Defence Force (SCDF) fleet of ambu-
lances, activated by a central dispatching system. SCDF
conveys patients to the public hospital nearest to the in-
cident location, based on defined geographical locations,
in what is known as a catchment zone policy [25].
Transport to the nearest hospital is largely independent
of trauma severity and triage, in view of the widespread
capability of emergency departments island-wide in deal-
ing with trauma [26]. Adult trauma patients (≥ 18 years
of age) presenting at the emergency department of SGH
between October 2014 and October 2015 were included
in this study. Patients who had non-sinus rhythm (asys-
tole, ventricular or supraventricular arrhythmias) were
excluded as these can lead to inaccuracies in HRV/HRC
computation. ECGs that contained artefacts and/or ec-
topics in more than 30% of the entire ECG reading were
also excluded. This study obtained ethics approval from
SingHealth Institutional Review Board.

Data collection
We collected patient demographic information, vital signs,
laboratory results and outcome information retrospect-
ively from electronic health records. These parameters
were then used to calculate selected triage trauma scores.
The triage trauma scores that we included in this study
are T-RTS, MEWS, M-GAP and GAP. The calculation of
the scores was based on presenting vital signs and initial
laboratory results for standardisation. Lower scores signi-
fied greater physiological dysfunction and severity in
T-RTS, M-GAP and GAP. For MEWS, the higher the
score is, the greater the physiological dysfunction. Details
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of the various scoring criteria for the trauma scores are
listed in Additional file 1: Table S1-Table S4.
Routine ECG evaluations are performed on arrival for

all trauma patients presenting in the emergency depart-
ment, in accordance with trauma pathways. These rou-
tine ECG readings of the patients allocated for HRV
analysis were retrieved from the ZOLL X Series Monitor
defibrillator (ZOLL Medical Corporation, MA, USA).
The ECG readings of 5 min segments were processed
and analysed using the Kubios HRV Software (KUBIOS
HRV, University of Eastern Finland, Kuopio, Finland)
[27]. Beat annotations were obtained by automated ana-
lysis by the software, and manual review. In this study,
we conducted time domain, frequency domain and
non-linear analyses. Time domain analysis and frequency
domain analysis are regarded as HRV parameters, and
non-linear analysis is regarded as HRC parameters. The
HRV and HRC parameters were analysed as continuous
variables.

Outcomes
Our primary outcome was the need for LSIs, within
24 h of emergency department presentation, and this is
defined as any intervention that would directly prolong
the life of the patient. These include blood transfusions,
endotracheal intubations, surgical interventions for
trauma, cardioversion, chest tube placement, cardiopul-
monary resuscitation (CPR), cricothyroidotomy, thora-
cotomy, angiography with or without embolisation,
needle decompression, tourniquet application, use of
vasoactive medications and hyperosmolar fluid therapy
[22]. Patients who received more than one LSI were not
double-counted in our study.

Statistical analysis
Statistical analysis was performed using SPSS version
20.0 (SPSS, IBM Corporation, IL, USA). All continuous
variables were checked for normality by considering the
Shapiro-Wilk test [19]. For parameters with normal
distribution, means and standard deviations were
computed, and univariate analysis was conducted with
Student’s t test. Parameters that were not normally
distributed are presented as medians and interquartile
ranges, and univariate analysis was conducted with
Mann-Whitney U test. Pearson’s chi-squared test was
performed for all categorical variables. Statistically sig-
nificant was considered as p < 0.05.
Univariate analysis was performed to compare HRV

parameters between the LSI and non-LSI groups, reflect-
ing demographics, vital signs, laboratory results and out-
come parameters. Multivariate regression analysis with
backward Wald selection was performed for HRV pa-
rameters with a univariate p value < 0.2. Patient demo-
graphics and vitals were added as covariates in the

multivariate regression analysis, with clinical relevance
in mind. Assumptions for the regression analysis were
tested and met. Specifically sample size was found to be
adequate for the regression analysis as per Green [28]
(recommended minimum sample size is 186), no signifi-
cant causal association was determined and there was
no collinearity as variance inflation factor (VIF) scores
were well below 10, and tolerance scores above 0.2
(statistics are 4.90 and 0.63 respectively). Using the
results of the multivariate regression analysis, we built a
model incorporating vital signs and HRV/HRC parame-
ters. We then generated the receiver operating charac-
teristic (ROC) curves for this model, selected vital signs
as well as for other triage trauma scores. We calculated
the areas under the ROC curve (AUC), sensitivities,
specificities, positive and negative predictive values.

Results
Two hundred and seventy-three patients were triaged as
trauma patients in the emergency department.
Forty-eight patients were excluded (11 non-trauma pa-
tients, 3 underage patients, 3 patients with missing data
and 31 patients with artefacts and/or ectopics in more
than 30% of their ECG readings) (Fig. 1). There were no
patients who presented with ventricular and supraven-
tricular arrhythmias, and data was not collected for pa-
tients who presented to the emergency department with
asystole. Two hundred and twenty-five patients were in-
cluded for HRV/HRC analysis.

Demographics
Patient demographics and incidences of co-morbidities
are shown in Table 1, of whom 49 patients (21.77%)
required LSIs. The most common LSI was the need for
surgical management 24 h after trauma (35, 71.42%),
followed by blood and blood product transfusions (16,
32.65%) and endotracheal intubation (10, 20.40%). Other
LSIs that were administered in this study population
were cardioversion (1, 0.02%), chest tube placement (3,
0.06%), CPR (1, 0.02%) and hyperosmolar fluid therapy
(1, 0.02%). Comparing patients who received LSIs with
those who did not, the LSI patients were younger on
average, but this was not statistically significant. We also
found that there were a significantly higher proportion
of males (42, 85.71% vs 115, 65.34%; p = 0.006) in the pa-
tients requiring LSIs. There were no other significant
differences in terms of ethnicity and co-morbidities.
We analysed the mechanisms of injury in our patients

(Table 1) and found that the most common mechanism
was a fall (94 patients, 41.77%). Sixty-five patients
(28.88%) were involved in a road traffic accident (RTA)
and 24 patients (10.67%) had injuries related to burns.
Forty-two patients (18.66%) presented with other mech-
anisms of injury, including work-related injuries (2
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patients), assault (1 patient), trauma from falling objects
(1 patient) and maritime accidents (2 patients). Compar-
ing the two groups, we found that there was a signifi-
cantly lower number of patients involved in falls in the
LSI group as compared to the non-LSI group (7, 14.28%
vs 87, 49.43%; p < 0.001). There was a greater proportion
of LSI patients involved in RTA, but this was not signifi-
cant (19, 38.77% vs 46, 26.13%; p = 0.084). A significantly
higher proportion of burns patients required LSIs (9,
18.36% vs 15, 0.09%; p = 0.048). In total, 27 patients
(12.00%) required intensive care unit admission, 11
patients perished (4.9%) and the median length of
hospitalisation was 5 days. In terms of these out-
comes, patients in the LSI group fared worse, with a
greater incidence of intensive care unit admission (22,
44.90% vs 5, 2.84%; p < 0.001), death (10, 20.41% vs 1,
0.57%; p < 0.001) and a longer hospitalisation duration
(21 days, interquartile range [IQR] 9–106 vs 3 days,
IQR 2–15; p < 0.001).

Univariate analysis
Univariate analysis was carried out for vital signs and la-
boratory results (Table 1), and HRV/HRC parameters
(Table 2). Patients in the LSI group had significantly
higher heart rate readings (93.49 beats per minute ±
21.28 vs 85.42 beats per minute ± 16.32, p = 0.02). There

was also a significant difference in the GCS scores (15,
IQR 3–15 vs 15, IQR 15–15; p < 0.001), with LSI patients
having a greater variability of GCS scores, with more
scores which were less than 15, as compared to the
non-LSI group. There were no significant differences in
terms of the systolic (126.14 mmHg ± 29.59 vs
138.45 mmHg ± 24.76, p = 0.24) and diastolic
(75.41 mmHg ± 19.31 vs 77.40 mmHg ± 14.84; p = 0.106)
blood pressures. Blood pH levels (7.00, IQR 7.00–7.31 vs
7.36, IQR 7.25–7.41; p = 0.038) and lactate levels (2.7,
IQR 2.1–3.6 vs 2.2, IQR 1.8–3.3; p = 0.015) were more
deranged amongst LSI patients as compared to non-LSI
patients. There was no significant difference in terms of
serum haemoglobin levels between the two groups.
As shown in Table 2, amongst the HRV/HRC pa-

rameters, we found that mean of the instantaneous
heart rate in electrocardiograms (avHR) (97.33, IQR
85.59–122.96 vs 88.96, IQR 83.47–96.40; p = 0.029)
which measures average heart rate on ECG readings was
significantly elevated in the LSI group as compared to the
non-LSI group. In the time domain analysis segment, we
also noticed that number of consecutive RR intervals dif-
fering by more than 50 ms in electrocardiograms (NN50),
a measure of variability of RR intervals in ECG readings,
was significantly different, with the non-LSI group show-
ing greater variability. In the frequency domain analysis,

Triaged as trauma in emergency 
department (n=273)

ECG allocated for HRV analysis 
(n=256)

Excluded 
- Atraumatic mechanism of 

injury (n=11)
- Missing data (n=3)
- Age<18 year old (n=3)

Excluded
- Artifacts/ectopics for >30% of 

ECG reading (n=31)

Included for HRV/HRC analysis 
(n=225)

Fig. 1 Patient breakdown for heart rate variability (HRV) and heart rate complexity (HRC) analysis. ECG electrocardiogram
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Table 1 Characteristics of patient demographics, co-morbidities, mechanisms of traumatic injury, outcomes, life-saving
interventions (LSI), vital signs, laboratory results and triage trauma scores

LSI (n = 49) Non-LSI (n = 176) P value

Patient demographics

Age (median, IQR) 39, 27–53 44, 31–62 0.051

Age> 56 (n, %) 9, 18.36% 62, 35.23% 0.025

Male (n, %) 42, 85.71% 115, 65.34% 0.006

Chinese (n, %) 28, 57.14% 105, 59.66% 0.751

Ischemic heart disease (n, %) 0, 0.00% 9, 5.11% 0.106

Diabetes mellitus (n, %) 3, 0.06% 21, 11.93% 0.244

Hypertension (n, %) 7, 14.29% 36, 20.45% 0.331

Hyperlipidemia (n, %) 3, 0.06% 26, 14.77% 0.110

Congestive cardiac failure (n, %) 1, 0.02% 3, 0.02% 0.875

Cancer (n, %) 0, 0.00% 13, 0.07% 0.052

Respiratory disease (n, %) 2, 0.04% 10, 0.06% 0.659

Renal disease (n, %) 0, 0.00% 6, 0.03% 0.190

Mechanisms of traumatic injury

Fall (n, %) 7, 14.29% 87, 49.43% < 0.001

Road traffic accident (n, %) 19, 38.78% 46, 26.14% 0.084

Burns (n, %) 9, 18.37% 15, 0.09% 0.048

Others (n, %) 14, 28.57% 28, 15.91% 0.044

Outcomes

Intensive care unit admission (n, %) 22, 44.90% 5, 2.84% < 0.001

Death (n, %) 10, 20.41% 1, 0.57% < 0.001

Overall stay (median, IQR) 21, 9–106 3, 2–15 < 0.001

LSI (n, %) 49, 21.78%

Operating theatre within 24 h, for trauma (n, %) 35, 71.43%

Endotracheal intubation (n, %) 10, 20.41%

Blood transfusion (n, %) 16, 32.65%

Vital signs

Heart rate, beats per minute (mean ± SD) 93.49 ± 21.28 85.42 ± 16.32 0.020

Respiratory rate, breaths per minute (median, IQR) 18.00, 14–19 18.00, 18–18 0.396

Temperature, degrees Celsius (median, IQR) 36.50, 31.3–36.7 36.70, 36.1–36.9 0.972

Systolic blood pressure, mmHg (mean ± SD) 126.14 ± 29.59 138.45 ± 24.76 0.238

Diastolic blood pressure, mmHg (mean ± SD) 75.41 ± 19.31 77.40 ± 14.84 0.106

Oxygen saturation, % (median, IQR) 99, 98–100 100, 98–100 0.397

Glasgow coma scale (median, IQR) 15, 3–15 15, 15–15 < 0.001

Pain score, out of 10 (median, IQR) 6, 0–9 7, 0–10 0.798

Laboratory results

Haemoglobin (mean ± SD) 13.97 ± 2.55 (n = 49) 13.48 ± 2.38 (n = 151) 0.852

pH (median, IQR) 7.00, 7.00–7.31 (n = 17) 7.36, 7.25–7.41 (n = 22) 0.038

Lactate (median, IQR) 2.7, 2.1–3.6 (n = 23) 2.2, 1.8–3.3 (n = 38) 0.015

Triage trauma scores

T-RTS (median, IQR) 12, 8–12 12, 12–12 < 0.001

MEWS (median, IQR) 1, 1–3 1, 1–2 < 0.001

M-GAP (median, IQR) 25, 17–26 27, 22–29 0.002
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we found that high frequency (HF) that measures power
in the high frequency range was significantly decreased in
the LSI group. In the non-linear analysis, we found that
approximate entropy (ApEn) (1.00 ± 0.25 vs 1.09 ± 0.15, p
= 0.001), which measures approximate entropy, was sig-
nificantly lower in the LSI group. Detrended fluctuation
analysis (DFA)-α1 and DFA-α2 were significantly higher
in the LSI group as compared to the non-LSI group, and
these are readings of DFA.

We compared triage trauma scores between the LSI and
non-LSI group, in Table 1. Amongst the 225 patients, the
median T-RTS score was 12 (IQR 12–12), the median
MEWS score was 1 (IQR 1–1), the median M-GAP score
was 27 (IQR 24–29) and the median GAP score was 23
(IQR 21–24). As expected, there were significant differ-
ences between the LSI group and non-LSI group in all the
scores, with the LSI group having a greater proportion of
deranged scores.

Table 1 Characteristics of patient demographics, co-morbidities, mechanisms of traumatic injury, outcomes, life-saving
interventions (LSI), vital signs, laboratory results and triage trauma scores (Continued)

LSI (n = 49) Non-LSI (n = 176) P value

GAP (median, IQR) 22, 12–24 24, 19–24 0.011

IQR interquartile range, SD standard deviation, T-RTS Triage Revised Trauma Score, MEWS Modified Early Warning System, M-GAP Mechanism of injury, Glasgow
Coma Scale, Age and Arterial blood pressure, GAP Glasgow Coma Scale, Age and Systolic blood pressure

Table 2 Univariate analysis of heart rate variability and complexity indices in associations with the need for life-saving interventions
(LSI) amongst trauma patients

LSI (n = 49) Non-LSI (n = 176) P value

Heart rate variability time domain analysis

aRR (mean ± SD) 704.58 ± 166.48 746.76 ± 141.49 0.302

sdRR (mean ± SD) 30.86 ± 31.20 34.71 ± 28.55 0.982

avHR (median, IQR) 97.33, 85.59–122.96 88.96, 83.47–96.40 0.029

sdHR (median, IQR) 2.03, 1.71–3.32 3.08, 1.88–4.53 0.899

RMSSD (mean ± SD) 17.03 ± 26.46 35.12 ± 148.41 0.278

NN50 (median, IQR) 0.00, 0.00–2.00 0.00, 0.00–13.75 0.043

pNN50 (median, IQR) 0.00, 0.00–0.45 0.00, 0.00–3.85 0.051

TINN (mean ± SD) 122.56 ± 93.47 150.75 ± 137.51 0.399

Heart rate variability frequency domain analysis

VLF (median, IQR) 58.50, 41.75–218.25 243.00, 132.00–396.00 0.416

LF ms2 (median, IQR) 15.50, 3.00–217.00 100.00, 60.00–262.00 0.072

HF ms2 (median, IQR) 4.50, 0.75–25.00 44.00, 21.00–167.00 0.011

LF norm (median, IQR) 89.05, 67.98–92.90 78.00, 50.30–84.00 0.128

HF norm (median, IQR) 10.95, 7.03–31.98 21.00, 16.00–49.30 0.128

LF/HF (median, IQR) 8.11, 3.32–13.26 4.52, 1.02–5.62 0.147

TP (median, IQR) 76.00, 46.50–504.25 454.00, 275.00–713.00 0.175

Heart rate complexity non-linear analysis

Poincare plot SD1(mean ± SD) 12.01 ± 18.76 17.49 ± 25.03 0.257

Poincare plot SD2 (mean ± SD) 41.34 ± 40.65 43.42 ± 31.65 0.545

Approximate entropy (mean ± SD) 1.00 ± 0.25 1.09 ± 0.15 0.001

Sample entropy (mean ± SD) 1.13 ± 0.45 1.39 ± 0.38 0.144

DFA-α1 (mean ± SD) 1.24 ± 0.39 1.12 ± 0.31 0.045

DFA-α2 (median, IQR) 1.09, 0.93–1.68 1.00, 0.89–1.11 0.027

IQR interquartile range, SD standard deviation, aRR average width of the RR intervals in electrocardiograms, sdRR standard deviation of all RR intervals in
electrocardiograms, avHR mean of the instantaneous heart rate in electrocardiograms, sdHR standard deviation of the instantaneous heart rate in
electrocardiograms, RMSSD root mean square of differences between adjacent RR intervals in electrocardiograms, NN50 number of consecutive RR intervals
differing by more than 50 ms in electrocardiograms, pNN50 percentage of consecutive RR intervals differing by more than 50 ms in electrocardiograms, TINN
baseline width of a triangle fit into the RR interval histogram using a least squares technique in electrocardiograms, VLF very low frequency power in
electrocardiograms, LF low frequency power in electrocardiograms, HF high frequency power in electrocardiograms, norm normalised, LF/HF ratio of LF power to
HF power in electrocardiograms, TP total power derived from variance of all RR intervals in electrocardiograms, DFA detrended fluctuation analysis
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Multivariate analysis
Multivariate logistic regression analysis (Table 3) in-
cluded patient demographics, vital signs and HRV/HRC
indices, which then revealed that GCS (odds ratio (OR)
0.756, 95% confidence interval (CI) 0.660–0.864; p <
0.001), DFA-α1 (OR 3.932, 95% CI 1.256–12.314; p =
0.019) and DFA-α2 (OR 5.200, 95% CI 1.060–25.504; p
= 0.042) were significant. As shown in Fig. 2, the ROC
curve for our HRV/HRC model was compared with the
ROC curves of the other triage trauma scores as well as
GCS, heart rate and a combination of GCS and heart
rate. Table 4 presents the corresponding predictive per-
formance of various models and scores. The HRV/HRC
model had a greater AUC value (0.75, 95% CI: 0.66–
0.83) as compared to the other triage trauma scores and
that of GCS, heart rate and a combination of GCS and
heart rate. The HRV/HRC model also had a higher sen-
sitivity as compared to the other triage trauma scores

and selected vital signs. However, the HRV/HRC model
had a lower specificity compared to MEWS and GAP. It
had a positive predictive value that was larger than
M-GAP and GAP, but lower than MEWS. The HRV/HRC
model achieved the greatest negative predictive value.

Discussion
In this study, we constructed a model incorporating vital
signs and HRV/HRC parameters for the prediction of
the need for LSIs within 24 h of trauma patients pre-
senting to the emergency department. In comparison,
the HRV/HRC model outperformed several conventional
triage trauma scores as well as common vital signs in
terms of AUC value, sensitivity, positive predictive value
and negative predictive value.
Common vital signs and 12-lead ECG variables are

routinely monitored for clinical decision making and
risk stratification in emergency departments [18], and
HRV and HRC parameters are increasingly being in-
corporated for clinical decision making as well [29,
30]. The simplicity of our model which incorporates
such routine vital signs and HRV/HRC parameters al-
lows for its real-time use and application in the field
and emergency room.
We found that the systolic blood pressures do not sig-

nificantly differ in the LSI group and the non-LSI group.
This is likely due to the natural physiological compensa-
tory mechanisms that work to maintain normal systolic
blood pressure as previously theorised. This lack of obvi-
ous difference in blood pressure underlines the import-
ance of HRV/HRC analysis, which provides a window
into the level of autonomic dysfunction which is directly
related to patient outcomes.
We also showed that in LSI patients, there were com-

paratively lower HRV parameters (NN50 and HF) and
HRC parameters (ApEn). There were higher HRC pa-
rameters of DFA-α1 and DFA-α2, compared to the
non-LSI group as well. These parameters describe de-
creased parasympathetic stimulation [30–34], as well as
a greater degree of autonomic dysfunction [35–37] in
the LSI group. Autonomic dysfunction, measured by low
sample entropy and ApEn parameters, are well docu-
mented to be associated with cardiovascular dysfunction,
severity of disease, need for LSI and mortality in trauma
patients [19, 22, 30, 35, 38, 39]. In our study, we simi-
larly found that the LSI group patients had lower mean
ApEn and sample entropy parameters as compared to
the non-LSI group, but this was only statistically signifi-
cant for the ApEn metric.
Detrended fluctuation analysis is a method that allows

for detection of short- and long-range correlations
within the data over time [40]. This is based on the
principle that healthy heart rate fluctuations are fractal
in nature, which is to say that there are ‘self-similar’

Table 3 Multivariate logistic regression analysis for predicting
the need for life-saving interventions amongst trauma patients

OR (95% CI) P value

All variable

Age 1.026 (0.987–1.066) 0.200

Age greater than 56 0.363 (0.079–1.674) 0.194

Systolic blood pressure 0.989 (0.972–1.006) 0.201

Heart rate 1.021 (0.997–1.044) 0.085

Glasgow Coma Scale 0.819 (0.699–0.960) 0.014

avHR 1.002 (0.973–1.031) 0.916

NN50 0.996 (0.958–1.036) 0.840

pNN50 1.043 (0.903–1.204) 0.570

LF 1.000 (0.999–1.002) 0.328

HF 0.999 (0.999–1.000) 0.224

LF norm 0.817 (0.574–1.162) 0.261

HF norm 0.842 (0.590–1.199) 0.340

LF/HF 1.000 (0.998–1.002) 0.837

Approximate entropy 1.866 (0.060–58.263) 0.723

Sample entropy 0.364 (0.056–2.366) 0.290

DFA1 10.157 (1.621–63.659) 0.013

DFA2 3.758 (0.653–21.629) 0.138

Variables after backward Wald selection

Glasgow Coma Scale 0.756 (0.660–0.864) < 0.001

DFA-α1 3.932 (1.256–12.314) 0.019

DFA-α2 5.200 (1.060–25.504) 0.042

OR odds ratio, CI confidence interval, avHR mean of the instantaneous heart
rate in electrocardiograms, NN50 number of consecutive RR intervals differing
by more than 50 ms in electrocardiograms, pNN50 percentage of consecutive
RR intervals differing by more than 50 ms in electrocardiograms, LF low
frequency power in electrocardiograms, HF high frequency power in
electrocardiograms, norm normalised, LF/HF ratio of LF power to HF power in
electrocardiograms, TP total power derived from variance of all RR intervals in
electrocardiograms, DFA detrended fluctuation analysis
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fluctuations over periods of time ranging from seconds
to hours. This complex type of variability means that
there are long-range power-law correlations and indi-
cates that the fluctuations in heart rate are not influ-
enced just by the most recent value but also by more
remote events (a sort of ‘memory event’) [41]. Lower
DFA values have then been hypothesised to suggest a
breakdown in these fractal scaling properties and lower
DFA values have been seen in previous studies in pa-
tients requiring LSIs, patients that did not survive and in
patients who developed myocardial infarctions and de-
veloped atrial fibrillation [22, 30, 39, 41]. In our study
though, we found that patients who required LSIs had

higher DFA parameters, and this was found to be statis-
tically significant. This high DFA values were also found
to be independent predictors of LSI on multivariate
analysis.
To interpret these results then requires an under-

standing of the significance of DFA. DFA essentially
measures the self-similarity of fractal processes by
quantification of the short- and long-term correlations
in the data [40]. Normal RR interval signals will feature
a certain amount of such correlations, which render the
overall dynamics of the system to be neither completely
random nor completely organised, resulting in a normal
DFA value of 1. Deviations from this value in either

Fig. 2 Receiver operating characteristic (ROC) curves for heart rate variability/heart rate complexity (HRV/HRC) model, selected vital signs and
triage trauma scores. GCS Glasgow Coma Scale, MEWS modified early warning system, MGAP Mechanism of injury, Glasgow Coma Scale, Age and
Arterial blood pressure, GAP Glasgow Coma Scale, Age and Systolic blood pressure, T-RTS Triage Revised Trauma Score

Table 4 Comparison of predictive performance in receiver operating characteristic analysis

HRV/HRC model T-RTS MEWS M-GAP GAP GCS Heart rate GCS + heart
rate

Cut-off 0.18 12 2 27 22 15 84.5 0.18

AUC (95%
CI)

0.75 (0.66–0.83) 0.62 (0.53–0.71) 0.69 (0.60–0.78) 0.64 (0.55–0.73) 0.61 (0.52–0.70) 0.39
(0.29–0.48)

0.61
(0.52–0.71)

0.65
(0.56–0.75)

Sensitivity %,
(95% CI)

79.6% (68.3–
90.9)

28.6% (15.9–
41.2)

26.5% (14.2–
38.9)

55.1% (41.2–
69.0)

38.8% (25.1–
52.4)

65.3%
(58.9–78.2)

63.3%
(48.3–76.6)

57.1%
(42.2–71.2)

Specificity %,
(95% CI)

63.1% (55.9–
70.2)

94.3% (90.9–
97.7)

96.6% (93.9–
99.3)

61.4% (54.2–
68.6)

68.2% (61.3–
75.1)

14.9%
(11.3–21.9)

51.0%
(42.9–58.2)

61.0%
(52.6–67.5)

PPV %, (95%
CI)

37.5% (28.2–
46.8)

58.3% (38.6–
78.1)

68.4% (47.5–
89.3)

28.4% (19.4–
37.5)

25.3% (15.5–
35.2)

38.6%
(27.3–51.4)

26.3%
(21.5–31.6)

28.6%
(22.8–35.1)

NPV %, (95%
CI)

91.7% (86.8–
96.6)

82.6% (77.3–
87.8)

82.5% (77.3–
87.7)

83.1% (76.6–
89.5)

80.0% (73.6–
86.4)

82.3%
(79.0–85.2)

83.2%
(76.9–88.0)

83.5%
(78.1–87.7)

HRV heart rate variability, HRC heart rate complexity, T-RTS Triage Revised Trauma Score, MEWS Modified Early Warning System, M-GAP Mechanism of injury,
Glasgow Coma Scale, Age and Arterial blood pressure, GAP Glasgow coma scale, Age and Systolic blood pressure, AUC area under the curve, CI confidence
interval, PPV positive predictive value, NPV negative predictive value, GCS Glasgow Coma Scale
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direction are then abnormal [36]. In this study, we have
shown that DFA values tend to be greater than 1.00 in
the LSI group as compared to the non-LSI group, and
this can be interpreted to mean that correlations still
exist, but they are no longer a power law [42]. We are
satisfied with this aberration from the normal value to
be representative of significant abnormalities in DFA
which can then predict the need for LSI, though we
note that there are no significant studies that show
such increased DFA values.
Multivariate analysis showed that GCS, DFA-α1

(short-term exponent) and DFA-α2 (intermediate to
long-term exponent) are independent predictors of LSI.
The inclusion of both DFA-α1 and DFA-α2 into a model
with GCS outperforms other triage trauma scores and
underlines the usefulness of these ECG-derived metrics.
Our study highlights the usefulness of HRV/HRC

analyses in the emergency setting and we believe that
it helps to pave the way for use of this model in a
pre-hospital setting or in settings that facilitate re-
mote monitoring and triage. This comes on the back
of studies that have questioned the use of HRV and
HRV/HRC metrics for emergency and pre-hospital care,
in the identification of haemorrhaging patients [20], and
due to interindividual variability [23, 43] respectively.
Studies have also shown that standard clean vital signs
may be better than HRV and HRC metrics at predicting
LSI [20, 44], with greater AUROC values than HRV
models. However, we showed that our HRV/HRC model
outperformed models of GCS, heart rate and a combined
model of GCS and heart rate in our study population. Our
HRV/HRC model has outperformed both conventional
vital signs and triage trauma scores, but there is a need for
further studies and trials in HRV/HRC to demonstrate its
efficacy and usefulness.

Limitations
Our study was limited by the patient flow in a single
centre, leaving room for future multicentre studies
and trials to validate our model in predicting the
need for LSI in larger, more diverse patient popula-
tions. Our study was also limited to patients present-
ing in the emergency department, with our model
only having been validated on this group of patients.
We are assuming that our model would produce
similar results in other settings such as the
pre-hospital setting or in the remote triage setting.
The inter-individual variability in HRV/HRC parame-
ters is another limitation [29]. Patients of different
ages, races, genders, levels of fitness, amount of alco-
hol intake and many more may have different HRV
parameter values, even if they are healthy individuals
[45]. This inter-individual variability is then compli-
cated by the ever-changing nature of the emergency

department, in which conditions cannot be controlled.
This sensitivity for individual differences may limit
the reproducibility and applicability of our model in
different patient populations in other emergency
rooms around the world. Our study was also limited
by 31 samples having to be excluded from further
analyses on account of artefacts or ectopics on ECG
readings. HRV/HRC parameters are derived from
ECG readings, which are electrical signals picked up
from cutaneous electrical leads on the patient’s body.
In the unpredictable setting of trauma, and an
ever-changing emergency room, environmental forces
are unavoidable. These forces induce electromechan-
ical artefacts and ectopic beats which lead to a sub-
stantial reduction in eligible ECG waveforms, that may
preclude patients from HRV/HRC analysis [46]. This will
likely remain to be a limitation in any study involving the
care of patients in the pre-hospital and emergency care
setting due to the unpredictability of setting and time crit-
ical nature of care for unstable patients [47]. Lastly, we
also excluded the comparison with retrospective trauma
scores in our study. Whilst physiological trauma scores
are on the rise and are being used in the clinical setting
more, retrospective trauma scores such as ISS and TRISS
are still considered to be the gold standard of trauma se-
verity scoring [48, 49]. There is then a need for future
studies to compare our model with these retrospective
trauma scores, in order to effectively comment on the
benefits of HRV/HRC-based models in trauma.

Conclusions
In this single-centre study of trauma patients pre-
senting to the ED, our triage model that incorporates
HRV/HRC parameters and conventional vital signs
outperformed several triage trauma scores and con-
ventional vital signs in predicting the need for LSI.
By incorporating GCS and 12-lead ECG derivatives,
our model is easily applicable and can be seamlessly
incorporated into daily emergency department ma-
chines and processes. Our findings build upon a
backbone of literature citing the relevance and ap-
plicability of HRV and HRC parameters in trauma
patients. This technology can easily be integrated
into currently existing defibrillator machines in other
emergency rooms and unlocks future possibilities for
use in the pre-hospital, remote triage and early tri-
age settings. Furthermore, our study showcases the
ability to incorporate HRV/HRC analysis into models
with traditional vital signs to predict the need for
LSI amongst trauma patients. However, whilst HRV/
HRC analysis provides interesting insights into
trauma care, there are also obstacles that this tech-
nology faces before widespread clinical implementa-
tion can be achieved.
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