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Pathological conditions re-shape physiological
Tregs into pathological Tregs
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Abstract

CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining
peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and
anti-cancer immune responses. Over the past 20 years, a significant progress has been made since Tregs were first
characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets
(tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs),
homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity
(re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh, and Th17), and epigenetic regulation of Tregs
phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new
progresses in the study of Tregs. We have also proposed for the first time a novel concept that “physiological Tregs”
have been re-shaped into “pathological Tregs” in various pathological environments. Continuing of the improvement
in our understanding on this important cellular component about the immune tolerance and immune suppression
would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases,
allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.
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Introduction
CD4+FOXP3+ regulatory T cells are classified as a sub-
population of CD4 T cells specialized in the suppression
of immunopathogenic responses from the host immune
system against self or foreign antigens and dangerous
substances [1,2]. The suppressive function of Tregs in
the maintenance of self-tolerance and prevention of the
development of autoimmune and chronic inflammatory
diseases is mediated by different mechanisms such as
Tregs killing of target cells [3], modulation of target cell
signaling via cell-cell contact and/or secretion of anti-
inflammatory cytokines such as interleukin-10 (IL-10),
IL-35 [4,5], and transforming growth factor β (TGF-β)
[4,6] as well as modulation of target cells by exosome-
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carried microRNAs. Currently, several experimental systems
are commercially available that simplify the identification,
isolation, and characterization of Tregs using fluorescent-
conjugated antibodies for CD4, CD25, FOXP3, CD127,
cytotoxic T-lymphocyte associated molecule-4 (CTLA-4),
glucocorticoid-induced tumor necrosis factor (TNF) re-
ceptor (GITR), CD39, and CD45RA [7].
Originally termed suppressor T cells, the recognition

of regulatory T cells as a cellular mechanism for immune
tolerance resulted from experiments performed in the
1960s and 1970s by Gerson and Kondo, which described
the induction of suppressor T cells capable of downregu-
lation of antigen-specific T cell responses [8]. Due to the
lack of known molecular markers, research on suppres-
sor T cells ceased. However, in 1995, Sagakuchi et al.
identified CD25 as a surface phenotypic marker for sup-
pressive CD4 cells in mice [9]. Since then, suppressive
T cells have been called regulatory T cells (Tregs). Since
the first characterization of Tregs in 1995 [9,10], one of
the major milestones in Tregs studies was the identifica-
tion of FOXP3. FOXP3 is a member of the forkhead/
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winged-helix family of transcription factors, which acts
as a “master regulator” (for multiple pathways) for the
development and suppressive function of Tregs [11-13].
The significance of FOXP3 gene was identified by its
mutations that cause fatal autoimmune diseases in early
life, which is now termed immunodysregulation, polyendo-
crinopathy, enteropathy, and X-linked (IPEX) syndrome in
mice and humans. Since the discovery of the FOXP3 gene,
its role and modification have been one of the potential
topics in translational medicine field due to the essential
function of FOXP3 in maintaining immune tolerance and
homeostasis. Similar to T-bet (a T-box gene encoded tran-
scription factor) [14], GATA3 (a trans-acting T cell-specific
transcription factor) [15], and RORγt (a RAR-related nu-
clear orphan receptor family member) [16] identified as
the subset-specific transcription factors for the terminal
differentiation of type 1 CD4 T helper cells (Th1), Th2,
and Th17, respectively, identification of FOXP3 as a Treg-
specific transcription factor was a logic approach for the
establishment of Tregs as a terminally differentiated and
lineage committed subset of CD4 T cells.
Due to its significant roles in controlling inflammation,

innate and adaptive immune responses, and immune tol-
erance, many unsolved questions remain to be the focus
of investigations [17], such as 1) whether Tregs have to
be generated in the central lymphoid organ like thymus
or Tregs can be “converted” from non-Tregs in periph-
eral tissues [18,19]. Recently, a special population of
Tregs was found in injured muscle, which is distinct
from other Treg population and potentiates muscle re-
pair. This report not only revealed a new function of
Tregs in modulating tissue repair but also proposed a
new pathway for Treg generation [20]; 2) whether there
are tissue-resident Tregs, in other words, whether tissue
physiological environment modulates Tregs’ genotypes
and phenotypes; 3) how do Tregs maintain their own
homeostasis. In 2008, we analyzed more than 90 factors
involved in regulating homeostasis of Tregs, suggesting
that the repertoires of Tregs are undergoing constant
adjustment [21]and finally three mechanistic issues were
addressed; 4) whether Tregs have functional receptors to
sense pathogen-associated molecular patterns (PAMPs)
or danger signal-associated molecular patterns (DAMPs)
and participate in inflammation [2,22,23]; 5) whether
Tregs are a non-changeable lineage committed subset or
have differentiation plasticity; and 6) whether epigenetic
mechanisms [19] regulate Tregs’ response to changes in
physiological tissue environments and pathological con-
ditions such as inflammation. Of note, Treg homeostatic
changes have been reported in various diseases [24-66]
as shown in Table 1, in which the PMIDs of the papers/
reviews are listed. Based on the significant progresses,
we have proposed for the first time a novel concept
that “physiological Tregs” have been modulated into
“pathological Tregs” in various pathological environ-
ments. As shown in our novel working model in Figure 1,
both physiological and pathological Tregs may undergo
changes in differentiation/subset plasticity, homeostasis
(survival/death), and proliferation dynamics via molecu-
lar mechanisms including pathogen (danger)-associated
molecular pattern (PAMPs/DAMPs) receptor signaling,
epigenetic mechanisms, microRNAs, and other noncoding
RNAs. The issue of how pathological conditions re-shape
the subsets of physiological Tregs remains to be poorly
addressed. Pathological Tregs can have four different
functional status including a) functional suppressors, b)
weakened suppressors, c) tumor-enhanced suppressors,
and d) malignant Tregs. Improvement of our understand-
ing on these important issues would eventually lead to the
future development of Tregs-based novel therapeutics for
treating acute and chronic inflammatory diseases, allergy,
allogeneic transplantation-related immunity, sepsis, auto-
immune diseases, and cancers. For more historical details
on the research progress of Tregs, one may refer to others’
excellent reviews as well as ours [2,13,16,18,19,21].

Review
tTregs, pTregs, iTregs, and iTreg35
FOXP3+CD28+Granzyme B+TGFβ-insensitive naturally oc-
curring thymus-generated Tregs (tTregs or nTregs) [67]
are characterized by the expression of CD4, and transcrip-
tional factor FOXP3 and high expression of CD25 [68]. Ini-
tially identified for their co-expression of CD4 and CD25
cell surface markers, in subsequent reports tTregs have
been recognized by other surface markers such as CD103,
CD62L, lymphocyte activation gene 3 protein (LAG 3),
C-C chemokine receptor type 5 (CCR5), neurophilin-1
[69-71], the activation antigens glucocorticoid-induced
tumor necrosis factor receptor (TNFR) family related gene
(GITR), and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) (also known as CD152), as well as the lack of
certain cell surface markers such as CD127 (the α chain of
the IL-7 receptor) [72].Of note, Helios, a member of Ikaros
transcription factor family is proposed to be a marker of
tTregs [73], which can be used to distinguish tTregs from
iTregs [67]. Fully matured FOXP3+ tTregs exit the thymus
and migrate to the secondary lymphoid organs where they
suppress the proliferation of tissue-specific autoimmune T
cells, restrain their differentiation into type 1 T helper cells
(Th1), Th2, and Th17 lineages in vivo [74], and inhibit
polyclonal T cell activation and T-effector cell trafficking
[67]. They recognize specific self-antigens and prevent
autoimmunity by the inhibition of pathogenic lymphocytes.
In addition to adaptive immune cells such as T cells and B
cells, tTregs also inhibit the function of innate immune
cells including antigen-presenting cells such as macro-
phages and dendritic cells (DCs) by modulating expression
of MARCHI and CD83 on macrophages and DCs [67,74].



Table 1 Treg homeostatic changes have been found in various diseases

Pathological conditions Major phenotypes PMIDs Reference #

Atherosclerosis coronary
disease (CAD)

Tregs in chronic stable angina patients → 20539016 [23]
Tregs in patients with ST-elevation acute
myocardial infarction ↑

Tregs in patients with non-ST-elevation acute
coronary syndrome patients ↓

Ratio of CD4+CD2S+Foxp3+/CD4+ T cells in patients
with acute coronary syndrome ↓

18294918 [24]

CD4+CD2S+Foxp3+ Tregs in patients with
unstable CAD ↓

17512253 [25]

End stage kidney disease Tregs sensitivity to Fas-mediated apoptosis 20429423 [26]

Type II diabetes Ratio of CD4+CD2Shigh Treg/Th17 ↓

21964948 [27]Ratio of CD4+CD2Shigh Treg/Th1 ↓

21169542 [28]Peripheral induced CD4+Foxp3+Helios− Tregs ↓

Bcl-2/Bax ratio in CD4+CD2Shigh Tregs ↓

Obesity-linked insulin resistance Natural Tregs↓ 21911743 [29]

Adaptive Tregs in visceral adipose tissue ↑

Obesity Circulating C04+CD25÷CD127-Foxp3+ Tregs ↓
and inversely correlated with body weight

23592653 [30]

Visceral adipose Tregs ↓ 21298111 [31]

Allergy Individuals may develop allergy (Th2 predominant)
or recovery (Tr1 predominant) depending on the
balance between allergen-specific Th2 and Tr1

15173208, 14987885 [32,33]

12704370 [34]CD4+CD25+ Tregs inhibit TH1 and TH2, cytokine
production in atopic patients

SLE (lupus) CD4+CD2S+, CD4+CD69+ and CD4+CD2Shigh Tregs ↓ 14599852 [35]

The frequency →, and function of CD4+CD25+ cells ↓,
CD4+Foxp3+ →

16890406 [36]

The ratio and number of CD4+CD25highFoxp3+ nTregs ↓ 17670847 [37]

The ratio of CD4+IL-1G÷ iTregs, but the number →

Rheumatoid arthritis CD4+CD2sbright Tregs cell in joint fluid ↑ 15807863, [38]

CD4+CD2sbright Tregs cell in peripheral blood ↓ 15225369, 16571607 [39,40]

Function of CD4+CD25+Tregs ↓ 15280421 [41]

Severe juvenile idiopathic arthritis CD4+CD25bright ↓ 15128835 [42]

Sepsis Ratio of circulating CD4.CD25÷CD45RO+CD69− Tregs/
CD4+CD25— Teffectorst ↑

12847405, 15640650 [43,44]

18946659 [45]Increased CD4+CD25+CD127−Foxp3+ Tregs contribute
to lymphocyte anergy Percentage of CD4+CD25+ Treg ↑

15640650 [44]

Resistance of Treg to apoptosis processes 11292647, 15817707 [46,47]

Injury CD4+CD25+ Treg function ↑ after burn injury 16365414 [48]

CD3+CD4+CD2ShighCDl27lowFoxp3+ ↑ in patients with
acute lung injury

19770521 [49]

Graft rejection The frequencies and proportion of CD4+CD2S+Foxp3+

Tregs → in allograft acceptors and rejecters, but the
Foxp3 expression levels in Tregs in acceptor patients
are 50% higher than rejecter patients

19109145 [50]

Cotransfer of purified CD4+CD2S+ Tregs along with
the CD4+CD25− T cells significantly delay graft versus
host disease

11390438 [51]
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Table 1 Treg homeostatic changes have been found in various diseases (Continued)

Inducible Tregs prolong allograft survival without newly
formed innate Tregs entering the periphery

14707064 [52]

TCR+CD4−CD8− Tregs mediate acceptance of skin
allografts by inducing the deletion of alloreactive
CD8+ T cells

10888927 [53]

FoxP3+ Treg/CD3+ T cell ratio positively correlated with
graft function at 2 years after transplantation

18495961 [54]

Cancer CD4+CD25high Tregs ↑ in circulating and tumor
infiltrating lymphocytes (TILs) in patients with epithelial
malignancies, inhibiting the proliferation of conventional
T cells and IFN-y production

11466340 [55]

CD4+CD25high Tregs with positive lL.10/TGF-p/CTLA-4 ↑
in peripheral blood, lymph nodes and tumor tissue in
patients with pancreatic and breast cancer

12193750 [56]

IL-lO-producing CD4+CD2Shigh Tregs ↑ in PB, TILs,
draining LNs, and ascites fluid in gastro-esophageal
cancers, which were strongly associated to disease stage

14555512, 15734494,
16328385, 12942579

[57-60]

CD4+CD25+Foxp3+ Tregs ↑ in PB, malignant ascites,
tumoral tissue, and draining INs in patients with ovarian
cancer patients

15322536 [61]

Circulating CD4+CD25high Tregs ↑ in chronic lymphocytic
leukemia (CLI), B cell-derived non-Hodgkin lymphomas
(B-NHL5)

15914560, 16403912,
17047079

[62-64]

CD4+CD25highCD45−RA−CD69−CD45RO+CD9S+ Tregs ↑
in acute myeloid leukemia and present higher apoptosis
and proliferation

16313258 [65]

↑: significant increase, ↓: significant decrease, →: no change.
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So far, the modes of how do tTregs suppress effector
cells have been identified: inhibition of cytokine production,
prevention of cytotoxic T cells proliferation, and inactiva-
tion of antigen-presenting cell function. In addition, Tregs
contribute to effector T cells apoptosis via three mecha-
nisms including Fas-FasL-mediated killing, suppressive
cytokine-induced impairment [6,75,76], and microRNA
transmitted in exosomes [77]. As we reviewed [18], the role
of tTregs in suppressing chronic inflammation has been
clearly demonstrated in experimental atherosclerosis model
in 2006 by Ait-Oufellaet et al., which showed an increase in
atherosclerotic lesion size and vulnerability in proathero-
genic apolipoprotein E deficient (ApoE−/−) mice after per-
ipheral Tregs were depleted [18,78].
FOXP3+CTLA4+IL-10+TGFβ-sensitive adaptive, indu-

cible, or peripheral Tregs (iTregs/aTregs/pTregs) [79,80]
are induced by T cell antigen receptor (TCR) ligation
(antigen-specific Tregs) [67] and TGFβ stimulation in
periphery from CD4+CD25− T cell precursors [21,79],
which acquire the upregulation of CD25 (interleukin-2
receptor α chain (IL-2Rα)). Inducible Tregs are devel-
oped from naïve CD4 T cells in the lymphoid tissues in
response to specific antigens in the presence of cytokines
such as transforming growth factor-β1 (TGF-β1),
interleukin-10 (IL-10), and IL-4, while in the absence of
pro-inflammatory cytokines such as interferon-γ (IFN-
γ), IL-1, IL-6, and IL-12. This antigen presentation in
the absence of danger signals is referred as tolerogenic,
which is essential for the suppression of undesired im-
mune reactivity against non-harmful materials such as
airborne particles, commensal bacteria, and foods. In
addition, iTregs depend on IL-2 for development and
survival as previously reported [21,81-83], which also ex-
plains why iTregs highly express CD25 and probably
other IL-2 receptor components. Furthermore, iTregs
may be able to redirect macrophage differentiation toward
an anti-inflammatory cytokine-producing type 2 macro-
phage phenotype (M2) rather than pro-inflammatory type
1 macrophages (M1 phenotype) [9].
Different subsets of iTregs have been reported including

T regulatory cell type 1 (Tr1) and T helper cell type 3
(Th3) [84]. Tr1 cells are CD25−FOXP3−CD49b+LAG-3+T
cells characterized by the secretion of large amounts of
IL-10, some IL-5 and IFN-γ with or without TGF-β, IL-2,
or IL-4 [85,86]. Tr1 cells control the activation of naïve
and memory T cells in vivo and in vitro and also suppress
the Th1 and Th2 immune responses to pathogens, tu-
mors, and alloantigen-expressed transplanted tissues [87].
The capacity of DCs to induce T cell proliferation is
strongly reduced by the supernatant of activated Tr1 [88],
suggesting that Tr1 suppression is mediated by secreted
cytokines. Th3 cells have been shown to produce high



Figure 1 Our novel working model has been proposed: “Pathological conditions re-shape physiological Tregs into pathological Tregs”.

Yang et al. Burns & Trauma  (2015) 3:1 Page 5 of 11
amounts of TGF-β when induced by oral tolerance in mu-
cosal tissue in an antigen-specific manner [74]. In
addition, CD4+LAP+ (latency-associated peptide) Tregs
have been identified recently as the third iTregs subtype
whose suppression is mediated by TGF-β in immune dis-
eases including experimental autoimmune encephalitis
(EAE), type I diabetes mellitus (T1DM), systemic lupus er-
ythematosus (SLE), collagen-induced arthritis, type II dia-
betes, and atherosclerosis in mice [74,89].
Most recently, a new suppressive cytokine IL-35 [6,75,76]
has defined a new IL-35-producing iTregs subset, iTreg35
[75], and a subset of IL-35-producing B regulatory cells
(Breg) [90,91]. These induced cell subsets are probably
responsive to acute and chronic inflammation stimuli
since we previously reported that IL-35 is a new cat-
egory of suppressive cytokine termed responsive cyto-
kine in contrast to the house-keeping suppressive cytokine
TGF-β [4].
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Tissue-resident Tregs
Similar or parallel to the classification of tTregs, pTregs,
iTregs, and iTreg35, it has been proposed that Tregs can
also be classified into three new subsets, central Tregs,
effector Tregs, and tissue-resident Tregs [17]. Of note,
every new classification of cell subsets reflects the im-
provement of our understanding on the features of the
cells. Central Tregs, also termed as resting Tregs or
naïve Tregs, make up the majority of Tregs in the circu-
lation and secondary lymphoid organs. Central Tregs
have a phenotype of CD62LhighCCR7+ (C-C chemokine
receptor type 7) or CD45RAhighCD25low. Effector (mem-
ory) Tregs constitute a minor fraction of Tregs in the
circulation and secondary lymphoid organs, which have
a phenotype of CD62LlowCCR7lowCD44highKLRG1+ (killer
cell lectin-like receptor subfamily G member1-positive)
CD103+ or CD45RAlowCD25high. Tissue-resident Tregs
specify those Tregs that have a long-term residence in
non-lymphoid tissues. So far, four types of tissue-resident
Tregs have been identified: 1) skin/lung Tregs are speci-
fied by two transcription factors FOXP3 and T-bet. The
trafficking of skin/lung Tregs are controlled by CXCR3
(receptor for the C-X-C chemokine CXCL9, CXCL10, and
CXCL11) and CCR4 (chemokine (C-C motif) receptor 4).
The homeostatic mediators for skin/lung Tregs include
CD40L, IFN-ɤ, IL-27, and IL-7; 2) gut Tregs are specified
by two transcription factors, FOXP3 and Signal transducer
and activator of transcription 3 (STAT3). The trafficking
of gut Tregs are controlled by CCR6. The homeostatic
mediators for gut Tregs include short-chain fatty acid
(SCFA), IL-10, IL-6, and IL-1; 3) germinal center Tregs
are specified by two transcription factors, FOXP3 and
BCL-6. The trafficking of germinal center Tregs are con-
trolled by CXCR5. The homeostatic mediators for germi-
nal center Tregs are still unknown; and 4) adipose tissue
Tregs [92] are specified by two transcription factors,
FOXP3 and peroxisome proliferator-activated receptor
gamma (PPARɤ). The chemokine receptors for trafficking
of adipose tissue Tregs are unknown. The homeostatic
mediators for adipose tissue Tregs include lipids and long-
chain fatty acid (LCFA) [17]. In the near future, we will
see more characterizations of tissue-resident Tregs. Identi-
fication of tissue-resident Tregs suggests that Tregs
express additional transcription factors, chemokine recep-
tors, and receptors for homeostatic mediators in order to
respond to the signals of tissue physiological environments.

Highly dynamic and apoptotic populations of Tregs
Our previous reports showed that CD25+/high Tregs are
a cell population that are “hungry” for IL-2 for survival
and undergo apoptosis easily by upregulating pro-
apoptotic protein Bax [81,93] and downregulating anti-
apoptotic cytosolic protein translationally controlled
tumor protein (TCTP) [82,83,94]. Postulating from our
updated understanding on CD25low central Tregs and
CD25high effector Tregs, our results suggest that CD25low

central Tregs are less likely to undergo acute coronary
syndrome- [95], end stage renal disease- [27], and chronic
inflammation/infection-related [17], IL-2 decrease-triggered
Treg apoptosis [96-98] than CD25high effector Tregs. Based
on our results and others’ reports, we proposed that the
Tregs apoptotic pathways are novel therapeutic targets
for the future development of novel therapy in treating in-
flammation, autoimmune disease, transplantation-related
diseases, allergy, and cancers [21]. Our findings were con-
firmed by recent excellent reports on high rates of Tregs
apoptosis. These reports show that Treg-specific transcrip-
tion factor FOXP3 is a pro-apoptotic protein [99]; and that
mitochondrial anti-apoptosis-regulatory pathway protein
Mcl-1 is critical for Tregs survival and niche-filling capacity
[100]. However, future work is still needed to determine the
apoptotic rates for each subset of Tregs.
High apoptotic rates of Tregs raises the question of

how these Tregs maintain their population sizes. Using a
special technique to follow up the Thy-1 expressing re-
cent thymic cell emigrants (RTE), investigators found
that approximately 30% of CD4+CD25+FOXP3+ Tregs
express the markers associated with RTE. Following thym-
ectomy, the numbers of cells expressing these markers fell
by 80% within 30 days. In addition, although only ~5% of
CD4 single-positive thymocytes express FOXP3 within 24
h after intrathymic injection of fluorescence dye fluores-
cein isothiocyanate (FITC), more than 30% of the labeled
CD4+RTE are FOXP3+, suggesting that some RTE may ac-
quire FOXP3 expression in the periphery. Thus, some
RTE may acquire FOXP3 rapidly after emigration from
thymus. Tregs are dividing rapidly with apparent half-lives
of ~18 days and ~7 days for the CD4+CD25+FOXP3+ and
CD4+CD25−FOXP3+ subsets, respectively. The apparent
slower turnover of CD4+CD25+FOXP3+ cells is a result of
CD4+CD25+FOXP3+ to CD4+CD25−FOXP3+ conversion,
with no loss of regulatory function. Therefore, the data
suggested that Tregs in adults are relatively short-lived
and Tregs numbers are maintained by rapid cell division
and continuous replenishment from the thymus [101].

Pathogen-associated molecular pattern receptors on Tregs
After a long time of extensive research, it has been
widely accepted that the host innate immune system is
equipped with a set of receptors to recognize PAMPs de-
rived from viruses, bacteria, other invasive microorgan-
isms and environmental stimuli or metabolite-related
DAMPs [2,22,23]. So far, four types of receptors for PAMPs
and DAMPs have been identified; Toll-like receptors
(TLRs, 13 members), nucleotide-binding oligomerization
domain (NOD) leucine-rich-repeat containing receptors
(NLRs, 18 members), C-type lectin receptors (5 members),
and retinoic acid-inducible gene I protein (RIG-I) helicase
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receptors (2 members) [102]. An important question re-
mains whether Tregs are equipped with these sets of recep-
tors for PAMPs and DAMPs. It was reported that
stimulation of human Tregs with a mixture of TLR2 li-
gands Pam2CSK4, Pam3CSK4, and FSL-1 can result in a
reversal of suppression on anti-CD3/anti-CD28 stimulated
responder T cells. However, the gastric mucosa of the in-
fected TLR2 knock-out mice showed a lower mRNA ex-
pression of FOXP3, IL-10, and IL-17A, but a higher
expression of IFN-γ compared to the gastric mRNA ex-
pression in infected wild-type mice [103]. In addition,
TLR5 and TLR8 also modulate the suppressive activity of
naturally occurring CD4+CD25high Tregs. The suppressive
capacity of Tregs is counter-regulated by TLR ligands in-
directly via antigen-presenting cells (APCs) or responder
T cells or directly [104]. Similarly, TLR4 stimulation of
T effector cells and Tregs co-culture leads to a more
pronounced T effector cell activation [105]. TLR ligand
lipopolysaccharide (LPS) stimulation of TLR4 on Tregs,
similar to T cell antigen receptor ligation, can enhance
Tregs suppression on neutrophils [106]. It is obvious that
this field is still in the early stage. Further studies are
needed to determine the roles of the receptors for PAMPs
and DAMPs in regulating Tregs homeostasis and suppres-
sive function.

Tregs plasticity and FOXP3 expression regulated by other
transcription factors
Current understandings suggest that naïve CD4 T helper
cells can differentiate/polarize into at least six different
terminally differentiated/lineage-committed subsets. 1)
Naïve CD4 T helper cells can differentiate into type 1 T
helper cell subset (Th1) with the expression of Th1-
specific transcription factor T-bet in the presence of IL-
12 and IFN-γ. 2) Naïve CD4 T cells can differentiate into
Th2 subset with the expression of Th2-specific tran-
scription factor GATA3 in the presence of IL-4. 3) Naïve
CD4 T cells can differentiate into Th17 subset with the
expression of Th17-specific transcription factor RORγt
in the presence of IL-6 and TGF-β. 4) Naïve CD4 T cells
can differentiate into iTregs subset with the expression
of Treg-specific transcription factor FOXP3 in the pres-
ence of TGF-β, retinoic acid, and IL-2. 5) Naïve CD4 T
cells can also differentiate into follicular T helper cells
(Tfh) subset in the presence of IL-21. Naïve CD4+ T cells
and Th2 can differentiate into Th9 cells in the presence
of TGF-β [107,108].
Among all these CD4 subsets, Th1 and Th2 are rela-

tively stable, but iTregs and Th17 cells can readily switch
to other T helper subsets under certain cytokine stimu-
lations. In the presence of B cells and CD40-CD40L
interaction, iTregs can switch to follicular T helper (Tfh)
cells mediated by transcription factor B-cell lymphoma/
leukemia 6 (BCL-6) [109]. In addition, iTregs can also
switch to IL-17-producing cells (Th17) mediated by
transcription factor STAT3 [109] after stimulation with
IL-6 and IL-21. Moreover, iTregs can also convert to
Th2 cells mediated by transcription factor Irf4 [109].
Furthermore, iTregs can switch to Th1 cells mediated by
T-bet [109]. Finally, Th17 can convert into IFN-γ-
producing Th1 cells or IL-4-producing Th2 cells when
stimulated by IL-12 or IL-4, respectively. Th2 cells con-
vert to IL-9-producing cells in response to TGF-β stimu-
lation [108]. This conversion of terminally differentiated
lineage committed subset to other terminally differenti-
ated lineage committed subsets is termed “plasticity”.
Several factors participate in the regulation of T cell con-
version including extrinsic and intrinsic ones. The ex-
trinsic factors include accessory immune cells, innate
receptors for PAMPs and DAMPs, cytokine microenvir-
onment including the cytokines in polarizing other T
helper subsets, cytokine receptor regulation, nutrient
availability, and metabolic pathways including long-chain
fatty acids and short-chain fatty acids for adipose tissue
Tregs. The intrinsic factors are cell cycle and phenotype
stability, microRNA mediated control of T cell phenotype,
transcription factor dosing and dominance, and epigenetic
modifications [109].
In fact, numerous transcription factors have been iden-

tified in reshaping Tregs development, function, and
homeostasis. These include the first group of transcrip-
tion factors functional in regulating FOXP3 expression
and the second group of transcription factors in forming
a complex with FOXP3. Some of the factors are over-
lapped in these two groups. The first group includes nu-
clear factor of activated T cells (NFAT), c-Rel (nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-kB)), activator protein 1 (AP-1), Nr4a (a subfamily
of the orphan nuclear receptors), and signal transducer
and activator of transcription 5 (STAT5), and FOXP3. In
addition to the regulation of FOXP3 gene expression, re-
cent reports indicate that FOXP3 itself is able to form
complexes with a number of co-factors to execute co-
operative effects during their interaction [110]. The sec-
ond group of FOXP3 co-factors is composed of as many
as 11 sequence specific transcription factors including
NFATc2, runt-related transcription factor 1 (RUNX1;
also known as acute myeloid leukemia 1 protein (AML1)
or core-binding factor subunit alpha-2 (CBFA2)), B-cell
lymphoma/leukemia 11B (BCL11b), Foxp1, Foxp4, GATA-
3, STAT3, Ikaros (Ikzf1; a lymphoid transcription factor
LyF-1), Aiolos (Ikzf3; the Ikaros, Aiolos and Helios are
three family members of the hematopoietic specific tran-
scription factors involved in the regulation of lymphocyte
development), Ets (E26 transformation-specific family of
transcription factors), and Cnot3 (CCR4-NOT transcription
complex, subunit 3). The majority of FOXP3 binding sites
within the genome lack an identifiable forkhead-binding
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motif in Tregs, which suggests that a large number of
FOXP3 co-factors facilitate the binding of FOXP3 to a
given site [111-113]. Since some of these transcription fac-
tors, if not all, are also inflammation-regulatory transcrip-
tion factors [114], it suggests that the inflammation and
pathological conditions can regulate the plasticity of Tregs
and other T cells. In support of this argument, the expres-
sion of Treg-specific transcription factor FOXP3 requires
demethylation of FOXP3 promoter [115] whereas proathero-
genic stimuli like oxidized low-density lipoprotein (oxLDL)
induces increased methylation of FOXP3 promoter and
decreased FOXP3 expression [116].

Epigenetic regulation and microRNA regulation of Tregs
Under inflammatory stimulations, the suppressive func-
tion of Tregs is decreased and TGF-β-induced Tregs de-
velopment is attenuated by an epigenetic manner [117].
It suggests that epigenetic regulation of Tregs function,
development, and homeostasis is patho-physiologically
relevant. In correlation with this finding, Tregs suppres-
sion is also reported to be attenuated in autoimmune
type 1 diabetes, in which epigenetics is one of the patho-
logical mechanisms involved [118]. What is epigenetics?
Epigenetics refers to heritable changes that occur in
gene expression without modification in the DNA se-
quence of the genome. These epigenetics mechanisms,
which briefly include DNA methylation/demethylation,
histones modifications, and micro-RNAs (miRNAs) are
the principal mechanisms involved in regulating chromo-
somal organization, chromosomal remodeling and then
gene expression via different dynamic levels. More specif-
ically, it has been demonstrated that epigenetics mecha-
nisms play a critical role in regulating FOXP3 expression
and lead to further regulations in Tregs functions and
homeostasis [119-121]. Emerging epigenetics therapies are
providing new therapeutic agents for the control of vari-
ous diseases [13,16,18,21,81-83,115,122].
The term epigenetics was first introduced by Conrad

Waddington in 1942 [123]. Epigenetics [123] integrates
organism genotypes by the influence and response of en-
vironmental stimuli on their phenotype, which can take
place in chromosomal DNA or in the proteins linked
with the chromosomal DNA such as histones. In recent
years, many epigenetic proteins have been investigated in
laboratories and in clinic, while inhibitor development for
modification enzymes is the frontier for drug discovery.
So far, epigenetic modifications have been grouped into
four main categories: DNA methylation, histone modifica-
tion including histone methylation/demethylation, histone
acetylation/deacetylation, histone phosphorylation, his-
tone SUMOylation [124], small and long noncoding
RNAs, as well as chromatin remodeling [124,125].
Noncoding RNAs (ncRNAs) are a type of functional

RNA molecule, which are not translated into proteins.
More functional groups of ncRNAs have been categorized
by the following: four short noncoding RNAs (17–31 base
pairs (bp)) (microRNAs (miRNAs), Piwi-interacting RNAs
(piRNAs), small interfering RNAs (siRNAs), and tran-
scription initiation RNAs), mid-size noncoding RNAs
(<200 bp) (small nucleolar RNAs, promoter-associated
small RNAs (PASRs), TSS-associated RNAs (TSSa-RNAs),
and promoter upstream transcripts (PROMPTs)), long
noncoding RNAs (lncRNAs, >200 bp), and its subgroups
such as long intergenic noncoding RNAs (lincRNAs), en-
hancer RNAs (eRNAs), transcribed ultraconserved regions
(T-UCRs) and other lncRNAs [126]. It has been widely
shown that ncRNAs not only regulate gene expression at
the transcriptional and post-transcriptional levels but also
play a role in the control of epigenetic pathways [127]. Of
note, we recently published a comprehensive review on
epigenetics enzymes as new therapeutic targets for Treg-
based therapy, which one may refer to for the details [19].

Conclusions
The roles of Tregs in inhibiting inflammation, auto-
immune diseases, allergy, transplantation, and modulating
anti-cancer immune responses have been well established.
Due to extensive studies, several new concepts and princi-
ples regarding Tregs in physiological and pathological sta-
tus have emerged, which are concisely discussed in this
brief review. Continuation in improving our understand-
ing on the molecular mechanisms underlying Tregs devel-
opment, homeostasis, and functions will eventually lead to
the future development of novel Tregs-based therapeutics
to treat inflammation, chronic cardiovascular diseases,
allergy, allogeneic transplantation-related immune re-
sponses, sepsis, autoimmune diseases, and cancers.
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