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Abstract

Smoke inhalation injury can cause severe physiologic perturbations. In pediatric patients, these perturbations cause
profound changes in cardiac and pulmonary physiology. In this review, we examine the pathology, early
management options, ventilator strategy, and long-term outcomes in pediatric patients who have suffered a smoke
inhalation injury.
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Background
Smoke inhalation injury causes a significant and often
morbid damage to the lungs that can lead to pro-
longed mechanical ventilation, increased mortality
with concomitant injuries, and long-term pulmonary
complications. For pediatric patients with a severe
burn injury, inhalation injury significantly increases
mortality and affects approximately 20 to 30% of pa-
tients [1]. A 10-year multicenter review of 850
pediatric burn patients with inhalation injury showed
that overall mortality was 16% and that the majority
of the patients died from pulmonary dysfunction and
sepsis. However, for pediatric burn patients with an
inhalation injury who need more than 1 week of
mechanical ventilation, mortality increases to 25 to
50% [2]. Additionally, children under age 4 who suffer
both a significant burn injury and inhalation injury
have a higher risk of death compared to children over
age 4 [3]. This may be due to differences in anatomy
and physiology in younger children. Younger children
tend to have higher resuscitative fluid requirements
due to their high body surface area to weight ratio
[4]. Thus, hypovolemia due to inadequate resuscita-
tion in the setting of severe inflammation from an
inhalation injury and a severe burn injury can lead to
death [5]. Additionally, smaller airways can complicate
or delay the appropriate securing of an airway and
also lead to increased risk of airway obstruction [6].
Also, younger children may not have fully developed

immune systems, which may increase the risk of in-
fections and sepsis leading to death [7].

Review
Pathology
For enclosed fires, carbon monoxide (CO) and cyan-
ide toxicity is an early and immediate cause of mor-
bidity and mortality due to hypoxia. Smoke generated
from burning wood has significantly higher concentra-
tions of CO and aldehydes compared to smoke from
accelerants [8]. If synthetic materials are also burned
in the fire, hydrogen cyanide (HCN) is released and
becomes a significant component of the inhaled
smoke [9]. CO has over 200 times the affinity of oxy-
gen for hemoglobin. This causes a decreased perfu-
sion of oxygenated blood to organs and cells leading
to organ and cellular damage [10]. Prolonged smoke
exposure causes elevated blood levels of CO, which
become increasingly toxic, leading to profound hyp-
oxia brain damage and brain death [11, 12]. Cyanide
also produces hypoxia at the cellular levels; however,
the mechanism differs from carbon monoxide. Cyan-
ide disrupts mitochondrial generation of adenosine
triphosphate (ATP) through binding of ferric ions in
cytochrome c oxidase. This interrupts the electron
transport chain and blocks aerobic cellular metabol-
ism [13].
Initially, in an enclosed fire, heated air is inhaled

into the upper airway. However, because of the reflex-
ive glottis closure, the heated dry air cools signifi-
cantly and causes minimal to no direct damage of the
lower airways. In situations where high-humidity hot
air is inhaled, such as super-heated steam, prolonged
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exposure to the air can cause significant direct ther-
mal damage to the upper and lower airways [14].
Upper airway damage occurs from direct thermal
injury. Epithelial damage from heated air causes dam-
age similar to thermal skin injury. Erythema and ul-
cerations develop in the oropharynx above the vocal
cord, and significant edema can ensue over the first
24 h after injury [15]. Initially after an inhalation in-
jury, upper airway damage may not manifest clinically,
but over the first several hours after injury, hoarse-
ness, stridor, and dyspnea can occur. The progressive
edema can be exacerbated by the acute resuscitation
for severe burn injury and can comprise the security
of the airway, necessitating early establishment of a
secure airway [16, 17].
Tracheobronchial damage below the vocal cords

occurs from chemical components of inhaled smoke.
Bronchoconstriction is triggered in the tracheobronchial
tree through activation of neuropeptides from smoke
exposure [18]. This in turn causes mobilization and activa-
tion of neutrophils resulting in the release of reactive
oxygen species and subsequent cellular damage [19]. This
damage manifests itself clinically with erythema and
inflammation of the mucosal lining of the bronchial tree.
The mucosal damage causes an exudative response
resulting in copious exudate filling the bronchi [16].
Further mucosal damage occurs from aldehydes, ammo-
nia, aromatic hydrocarbons, sulfur dioxide, and acrolein
causing ciliary damage thus inhibiting mobilization of
bronchial exudate [16, 20].
Damage to the lung parenchyma is usually a delayed

process and usually manifests itself 24 h after the initial
injury. Activation of immune systems occurs from in-
haled smoke in the tracheobronchial system [21]. The
production of reactive oxygen species and subsequent
damage triggers further inflammation resulting damage,
obstruction, and collapse of alveoli [22]. This causes
edema and consolidation of the pulmonary parenchyma
and clinically manifests as ventilation and perfusion mis-
matches [23]. With the extensive damage to mucociliary
function, copious exudate, consolidation, and collapse of
alveoli, smoke particulate clearance is impaired. This
causes further and persistent inflammation and paren-
chymal damage [24, 25].

Diagnosis
Diagnosis of inhalation injury starts with obtaining
information about the physical circumstances of the
incident. Patients found in enclosed fires, such as a
building or a house, are at high risk of having inhaled
some smoke. Additionally, fires that occur in manu-
facturing or storage facilities may have produced
smoke that is high in content of toxic-inhaled com-
pounds such as CO, cyanide, aldehydes, and acreolin

[26]. For pediatric patients, agitation and confusion
may be caused by smoke inhalation, injury, or fear.
Physical signs such as singed nasal hairs, smoke soot
on the nose and face, and soot in the oropharynx are
non-specific signs of smoke exposure [27]. Patients
may also exhibit signs of respiratory distress such as
stridor, dyspnea, hoarseness, and wheezing [6].
Chest x-rays often do not provide useful informa-

tion immediately due to the delayed pathologic
changes that occur with smoke inhalation. Often
changes occur physiologically prior to any changes or
evidence of inhalation injury on chest x-rays [28].
Other non-invasive modalities such as xenon lung
scanning and computer tomography (CT) can be used
to diagnose inhalation injury. Xenon lung scanning
with 133xenon isotope can diagnose inhalation injury;
however, studies indicate that over 10% of the xenon
scans can produce erroneous results [29]. CT scans
performed early after an injury show a fine ground-
glass appearance to the lungs [30]. However, cur-
rently, the most used and reliable method to diagnose
the extent and severity of inhalation injuries is
fiberoptic bronchoscopy. A recent study comparing
inhalation injury diagnostic methods determined that
fiberoptic bronchoscopy was the most effective
method. Additionally, the severity of injury found
with bronchoscopy correlated the best with clinical
findings and outcomes [31]. Findings on bronchos-
copy can range from mild edema and hyperemia
indicating mild injury, severe edema, hyperemia, and
soot indicating moderate injury, and ulcerations and
necrosis indicating severe injury [32].

Early management
The early management of patients with inhalation
injury centers around assessing and establishing an
adequate and stable airway and assessing and treating
CO and cyanide toxicity. For pediatric airway man-
agement, considerations must be given to age-related
anatomic differences and cross-sectional area differ-
ences. For younger patients such as infants and tod-
dlers, airway obstruction can occur rapidly due to a
number of factors. First, the tracheal anatomy of
younger patients is different than adults. The younger
patient’s tracheas are more funnel shaped and nar-
rower below the thyroid cartilage compared to adult
tracheas [33, 34]. Second, because the cross-sectional
area is smaller, any small reduction in the diameter of
the trachea exponentially increases the resistance to
air passage. Third, younger patients have shorter
mandibles, prominent adenoids, and larger tongues,
all of which limit the upper airway space [35]. Thus,
following an inhalation and severe burn injury, onset
of edema coupled with administration of sedatives
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and pain medication can quickly lead to upper airway
collapse [36].
Smoke inhalation injury also exposes patients to

several inhaled toxins. Because many pediatric pa-
tients are unable to escape from the scene of an
enclosed fire, their exposure to these toxins can be-
come significant. Approximately 5% of all acute
pediatric inhalation injuries involve inhaling CO [37].
Cyanide toxicity is also a potential contributor to
morbidity and mortality in pediatric inhalation injur-
ies. Although cyanide toxicity is rarely reported in
children, fatal levels of cyanide are found in over a
third of victims of enclosed fires [38].
For CO toxicity, initial management is centered on im-

mediate administration of 100% fractional inspiration of
oxygen (FiO2) and diagnosis and monitoring of CO tox-
icity. CO has a 200 times greater affinity for hemoglobin
compared to oxygen. With increase exposure to smoke
and inhalation of CO, hemoglobin preferentially binds
CO forming carboxyhemoglobin (COHb) compounds
resulting in hypoxia. Often, the dissolved concentration
of oxygen is normal in these settings; however, because
of CO affinity for hemoglobin, oxygen is unable to bind
to hemoglobin. As a consequence, tissue and cellular
delivery of hemoglobin becomes impaired resulting in
hypoxia. Additionally, plasma oxygen saturation monitor
values may be normal because the infrared wavelength
changes for hemoglobin saturated with oxygen versus
hemoglobin saturated with CO are the same. COHb can
be measured in the blood with arterial blood gas analysis
specialized for coximetry. Other methods that can be used
to determine the levels of CO toxicity are the CO-
oximeters and transcutaneous oxygen measurements [39].
Symptoms of CO toxicity begin to clinically manifest

as headaches and confusion at COHb levels of 15 to
20%. At COHb levels of 20 to 40%, patients are often
disoriented and may complain of visual disturbances. At
COHb levels of 40–60%, patients may become combat-
ive or obtunded. COHb level above 60% lead to death in
the majority of patients [16]. If suspicions are high for
CO exposure, then prompt administration of 100% FiO2

will immediately lower the levels of COHb. The half-life
of COHb is 60 min when 100% FiO2 is administered
compared to 5 h on room air oxygen concentrations.
Thus, if a patient has a COHb level of 20%, administra-
tion of 100% FiO2 will reduce COHb to 10% in 60 min
[40]. Patients should remain on 100% FiO2 until COHb
levels return to normal [41]. Hyperbaric oxygen (HBO)
also has utility in treating CO poisoning in children [42].
HBO administered at 2.5 atm reduces the half-life of
COHb to 20 min. However, HBO has some clinical limi-
tations. Patients are placed in sealed tanks that can only
accommodate one other person. This limits acute treat-
ment for other injuries such as burn injuries that are

often present in patients with inhalation injuries [43].
Some small studies have demonstrated some efficacy for
HBO compared to normobaric oxygen [43]. However,
many of these studies have significant design flaws and
conclusive evidence does not exist that supports the use
of HBO for CO poisoning [44].
HCN is the gaseous form of cyanide and can be a sig-

nificant component of inhaled smoke from structural
fires. Clinically, small amounts of cyanide are metabo-
lized in the liver. However, more abundant and faster ab-
sorption of hydrogen through the lungs in inhalation
injury overwhelms hepatic metabolism of cyanide lead-
ing to toxic levels [45]. Clinical manifestations of cyanide
toxicity include neurologic deficits, persistent and unex-
plained acidosis, and serum lactate greater than 8 mmol/
L [46]. Many clinical symptoms are hard to isolate to
cyanide toxicity due to concomitant burn injuries. In
particular, confusion and agitation in pediatric patients
is often present due to age-related anxieties and pain
from the burn injury [27]. Other signs of cyanide toxicity
are similar in both pediatric and adult patients. These
signs include persistent hypotension, cardiac arrthymias,
persistent metabolic acidosis, decreased serum or mixed
venous oxygen consumption, and persistently increased
lactate. These signs are consistent with the profound cel-
lular hypoxia that can occur following cyanide toxicity,
and treatment for cyanide toxicity should be considered
if these symptoms occur and clinical suspicions are high
[47]. There are several methods to diagnose cyanide tox-
icity. Non-direct testing includes serum lactate levels,
anion gap, and methemoglobin concentrations [48].
Cyanide levels can also be directly measured in the
blood. Levels of 0.5 to 1 mg/dL cause flushing and
tachycardia, levels between 1 and 2.5 m/dL can induce
delirium and coma, and levels above 3 mg/dL cause
brain death [48]. For treatment, hydroxocobalamin has
shown some efficacy in lowering cyanide levels. Hydro-
xocobalamin is a cobalt compound that binds to cyanide
and transforms cyanide to a non-toxic derivative [49]. In
the clinical settings, several limited studies have shown
efficacy for hydroxocobalamin in the setting of inhaled
cyanide toxicity; however, current evidence does not
support empiric administration [50]. Sodium thiosulfate
can also be used to lower cyanide levels and treat tox-
icity. Sodium thiosulfate binds to cyanide to donate a
sulfur group to form a less toxic compound thiocyanate.
However, because of its rapid onset, safety, and efficacy,
hydroxocobalamin has been touted as the antidote of
choice for cyanide toxicity [49, 51].

Ventilator management
Ventilator management in pediatric inhalation injury
should focus on providing adequate gas exchange while
minimizing ventilator-induced injury [52]. Infants and
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toddlers have a much higher oxygen consumption and
carbon dioxide production than adults and thus require
a much higher respiratory rate [53]. In parallel, aggres-
sive pulmonary hygiene should be immediately imple-
mented. Due to the exudate reaction triggered by smoke
inhalation, airways and functional units of the lungs can
become obstructed and filled with exudative debris.
Additionally, the impaired mucocilliary function further
limits clearance of mucous and exudate [19]. This
coupled with pulmonary edema can further exacerbate
poor gas exchange. Pediatric patients with concomitant
inhalation and burn injury are particularly susceptible to
developing pulmonary edema. This may be due to “fluid
creep” that may occur during resuscitation [54]. “Fluid
creep” is the administration of intravenous fluid during
burn resuscitation, that is a higher volume than the
Parkland formula calculation. Pediatric patients are par-
ticularly susceptible to this phenomenon. This may be
due to pre-admission fluid administration, inaccurate
measurements of body surface area, inaccurate measure-
ments of weight, inaccurate estimates of the extent of
burn injury, or a combination of these factors [55].
Younger patients, infants and toddlers, are at higher

risk of airway obstruction due to smaller airways and
less develop tracheobronchial tree [56]. Inhaled beta-
receptor agonists may help in decreasing bronchospasm
and improve airway obstruction following burn injury.
In a small pediatric inhalation injury study, nebulized
epinephrine was administered on admission and given
every 4 h for 7 days. This group was compared to
patients who only received standard of care. The investi-
gators found that nebulized epinephrine could be given
safely but did not find any significant differences in the
number of days of ventilation or functional outcomes
[57]. Continuously inhaled albuterol may also be benefi-
cial. An ovine model of inhalation indicated that 20 and
40 mg per hour of continuously inhaled albuterol re-
sulted in decreased peak airway pressure, decreased
pause pressure, and increased compliance [58]. However,
to date, there are currently no clinical investigations that
support the use of continuous albuterol in pediatric
inhalation injury.
Mechanical ventilation in pediatric inhalation injury

patients can be challenging due to physiologic and
pathologic changes that occur. Damage from smoke in-
halation results in pulmonary parenchymal damage and
causes decreased pulmonary compliance and increased
airway resistance [59]. As a consequence, ventilator
management strategies for pediatric inhalation injury pa-
tients have centered on decreasing further damage from
ventilator-induced barotrauma [60]. Many ventilator
modes can be used for pediatric inhalation injury pa-
tients. A survey of pediatric burn centers found that a
variety of ventilator modes are used from conventional

pressure and volume mode ventilators to high-frequency
oscillatory and jet ventilators [61]. For conventional ven-
tilators, controversy exists as to the optimal tidal volume
settings. Since the description of the mortality benefits
of low tidal volume ventilation for acute respiratory dis-
tress syndrome, many centers have decreased the tidal
volume limits for pediatric inhalation injury [62]. How-
ever, pediatric patients with a burn injury were excluded
from this study and a consensus on appropriate tidal
volumes for pediatric patients with acute respiratory dis-
tress has not been achieved [63]. A recent retrospective
study compared clinical outcomes between high tidal
volume (15 mL/kg) and low tidal volume (9 mL/kg) set-
tings in pediatric burn patients with inhalation injuries.
The investigators found that high tidal volumes
decreased ventilator days and atelectasis. However, the
high tidal volume group suffered significantly more
pneumothoraxes compared to the low tidal volume
group. Additionally, there was no significant difference
in mortality. [64]. Thus, while high tidal volumes may
improve pulmonary function, current evidence does not
support this strategy in pediatric patients with inhalation
injury. Prospective comparisons for short- and long-
term outcomes between high and low tidal volumes in
this patient population are needed to resolve this im-
portant issue.
Non-conventional ventilators have been used with

some reported success in pediatric inhalation injury.
High-frequency percussive ventilation (HFPV) provides
high-frequency small tidal volumes in combination with
low-frequency breathing rates [65]. This is combined
with a low-pressure circuit to maintain airway patency
and limit volumetric trauma. In burn patients, this mode
of ventilation may improve gas exchange and airway
pressures compared to the conventional ventilator
modes [66]. A small study comparing pediatric inhal-
ation injury patients on HFPV versus conventional venti-
lation indicated that patients in the HFPV group had
fewer pneumonias, lower peak inspiratory pressure, and
decreased work of breathing [67]. High-frequency oscil-
latory ventilation (HFOV) also has shown some success
in treating pediatric burn patients. High-frequency oscil-
latory ventilation provides high respiratory rates with
very low tidal volumes. This creates a high flow of oxy-
gen without a marked increase in airway pressures [68].
The efficacy of HFOV was studied in a small sample of
pediatric burn patients of which half were injured in a
house fire. The study indicated that HFOV might signifi-
cantly improve oxygenation. Thus, while there are a
number of effective mechanical ventilation modes, larger
prospective studies are needed to determine if any of
these modes are superior clinically.
Extracorporeal membranous oxygenation (ECMO) may

be used in cases of severe pulmonary failure. A review of
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the Extracorporeal Life Support Organization registry
found 36 pediatric burn patients treated with ECMO from
1999 to 2008. Seventeen patients underwent venovenous
ECMO, and 19 underwent venoarterial ECMO. Overall
survival was 53%. Eleven patients were placed on HFOV,
and 18 were placed on conventional ventilation. Of those
placed on conventional ventilation, 8 survived. For the
patients placed on high-frequency oscillatory ventilation, 7
survived. There were 7 patients who did not have infor-
mation regarding the type of mechanical ventilation [69].

Long-term outcomes
Inhalation injury in pediatric populations may not affect
self-reported disability or quality of life. One hundred
and thirty-five pediatric burn patients were assessed for
disability using the World Health Organization Disability
Assessment Scale II. The investigators found that there
were no differences in long-term disability between
patients who suffered an inhalation injury and a burn in-
jury compared to those who suffered only a burn injury.
Quality of life in these same patients was assessed using
the Burn Specific Health Scale-Brief. As with disability,
the investigators found no difference in long-term qual-
ity of life between patients with inhalation and a burn
injury and patients with a burn injury alone [70].

Conclusions
Pediatric inhalation injury has high morbidity and mor-
tality when combined with a burn injury. Considerations
must be made for age-related differences in exposure,
anatomy, and physiology in order to provide optimal
and efficient treatment. Early diagnosis and initiation of
treatment can mitigate serious and dire consequences.
Prospect studies are needed in a number of diagnostic
and treatment areas to determine benchmark treatment
strategies.
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