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New strategy for sepsis:  Targeting a key role 
of platelet-neutrophil interaction
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sepsis continues to be high. Totally, the mechanism of  sepsis 
is complex and the late therapies targeting a single molecular 
fail to cure the disease, for example, the monoclonal anti-
bodies against tumor necrosis factor (TNF)-α,[6] the receptor 
antagonists of  interleukin (IL)-1β[7] and the antibodies to 
endotoxin.[8] Hence, understanding the intricate and hetero-
geneous of sepsis addresses a better approach the problem of  
sepsis. Besides shock and multi-organ dysfunction occurring 
following the intense inflammatory reaction to sepsis, com-
plications arising from sepsis-related platelet activation and 
platelet-neutrophil interaction contribute to the morbidity 
and mortality from sepsis. This review explores the basis 
for sepsis-related platelet activation, neutrophil dysfunction, 
and platelet-neutrophil interaction and discusses their clini-
cal implications for the treating intensivist.

Sepsis-induced platelet activation 
Platelets, small (approximately 3-5 μm) anucleate cells 
derived from bone marrow megakaryocytes, were primi-
tively recognized to sense damaged vessel endothelium 
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A B S T R A C T
Neutrophil and platelet are essential arms of the innate immune response. In sepsis, platelet abnormal activation as well as neu-
trophil paralysis are well recognized. For platelet, it is characterized by the contribution to disseminated intravascular coagulation 
(DIC) and the enhanced infl ammation response. In terms of neutrophil, its dysfunction is manifested by the impaired recruitment 
and migration to the infectious foci, abnormal sequestration in the remote organs, and the delayed clearance. More recently, it 
has been apparent that together platelet-neutrophil interaction can induce a faster and harder response during sepsis. This article 
focuses on the activation of platelet, dysfunction of neutrophil, and the interaction between them during sepsis and profi les some 
of the molecular mechanisms and outcomes in these cellular dialogues, providing a novel strategy for treatment of sepsis.
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Introduction
Sepsis is a combination of  clinical manifestations of  system-
ic inflammation specifically related to an infectious insult[1]

and the inflammatory dynamic of  it, in term of  the cur-
rent hypothesis, includes an initial systemic inflammatory 
response syndrome (SIRS) followed temporally by a com-
pensatory anti-inflammatory response syndrome (CARS)[2-4]

then with a continuously, highly mixed anti-inflammtory 
response syndrome (MARS).[5] Given a profoundly impair-
ment and life threatening of  sepsis, there is an imperative to 
understand the concrete pathophysiology during sepsis and 
over the time the understanding is evolving. Mortality from 
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and accumulate at the site of  the vessel injury to initiate 
blood clotting. Recently, there is increasing evidence sug-
gesting their indispensable role in regulating inflammatory 
response.[9-11] During sepsis, platelets are immoderately 
activated by vari  ous patho  gen-associated molecular pat-
terns (PAMPs) and damage-associated molecular patterns 
(DAMPs), which amplify inflammatory response through 
complicated mechanisms. And the response triggered by 
the interaction between platelets and various PAMPs and 
DAMPs is through the platelet receptors, mainly glycopro-
tein (GP)IIb-IIIa (mediating the crosslinking of  platelet by 
fibrinogen to promote aggregation),[12] GPIbα (inducing 
platelet activation mainly by the von Willebrand factor 
[vWF]), FcγRIIa (en  hancing the function of  GPIIb-IIIa and 
GPIbα in an lgG-independent manner),[13,14] complement 
receptors (increasing upon activation,[15] and inducing plate-
let aggregation in a complement-dependent process[16]) and 
toll-like receptors (TLRs). Of note, GPIIb-IIIa, GPIbα, and 
FcγRIIa play a crucial role in platelet activation, adhesion 
and aggregation. For TLRs, especially TLR4 and TLR2, 
they can activate platelet to release immunomodulatory 
agents (like TNF-α[17]) and promote other cells activation, 
such as neutrophils, endothelial cells. Inappropriate acti-
vated platelets are major contributors to the initiation of  
disseminated intravascular coagulation (DIC) that is initi-
ated by tissue factor (TF), leading to the platelet adhesion 
induced by the receptors (like p-selectin) and ligands, like 
P-selectin glycoprotein ligand (PSGL)-1, interaction,[18]

the formation of  thrombin, fibrin, and intravascular 
thrombi,[19] which reduce oxygen supplement and enhance 
inflammatory cytokine ne tworks.[20,21] Additionally, various 
pro-inflammatory factors in platelets granules are released 
into the surrounding environment or transferred to plasma 
membrane, such as interleukins, monocyte chemoattactant 
protein (MCP)-1, platelet factor (PF)-4, to activate more 
remote platelets and immune cells.[22-24] Activated platelets 
can also release some microparticles.[25] Circulation mic-
roparticles are membrane-derived nano-fragments (0.05-
1 μm) which contain a storage pool of  TF and express 
P-selectin and platelet glycoprotein IIb-IIIa. As described 
above, these bioactive molecules may play deleterious role 
in the dissemination of  coagulopathy and inflammatory 
responses in sepsis.[26]

Neutrophil dysfunction in sepsis
Neutrophil originates from the bone marrow with a con-
sequent egress to the blood, recruits and migrates to the 
inflammatory site, then culminates in clearance. The life of  
neutrophil has been described, all of  which are uncontrolled 
altered during sepsis. 

The mature neutrophil within the bone marrow can rap-
idly egress in the early phrase of  sepsis, increasing the 
circulation numbers by tenfold within a matter of  hours 
compared with the normal condition.[27] The release of  
neutrophils  from bone marrow to the infection site has been 
historically attributed to the chemotactic factors including 
leukotriene B4, C5a, chemokine interleukin IL-8,[27-30] and 
the bacterial products. And the chemokine (C-X-C motif) 
ligand (CXCL)12, a recently new and pivotal chemoat-
tractant serve to retain neutrophil within the marrow, are 
also involved in this process.[31-34] The granulocyte colony-
stimulating factor (G-CSF) which is indirectly mobilized 
neutrophil through shifting the balance between stromal 
cell-derived factor (SDF)-1 and CXCR2 ligands in bone 
marrow[35] are also associated with this phenomenon, trig-
gering a release of  neutrophil into the circulation.

Infection is an alarming condition that renders host to 
defend. Neutrophil, as the fist line cell against the bacte-
rial and fungal pathogens, recruits to the site of  infection. 
The classical leukocyte recruitment cascade involves the 
following recognized steps: Tethering, rolling, adhesion, 
crawling, and, finally, transmigration. This process is a 
sequential, multistep adhesion cascade in which various 
cytomembrane molecules are sophisticated interactived 
(reviewed in Table 1[36]). However, during sepsis, this 

Table 1: Adhesion molecules involved in different stages of the 
classical neutrophil migration cascades in postcapillary venules

Different 
stages

Molecules on endothelium Molecules on 
neutrophil

Tethering and 
rolling

P-selectin PSGL1 (positively 
regulates recruitment)
PTX3 (negatively 
regulates recruitment)

Slow rolling ICAM1 LFA1 (PSGL1-induced)

E-selectin PSGL1, ESL1, CD44

Arrest and 
adhesion

ICAM1 LFA1

VCAM1 VLA4

Crawling ICAM1 MAC1

Transmigration 
and diapedesis

ICAM1, ICAM2 LFA1, MAC1

VCAM1 VLA4

CD99 CD99

PECAM1 PECAM1

JAMA LFA1, JAMA?

JAMB VLA4

JAMC MAC1

CD99L2 ?

VE-cadherin (negatively regulates 
recruitment), ESAM

Between endothelial cells

CD99L2 = CD99 antigen-like protein 2, ESAM = Endothelial cell-selective adhesion 
molecule, ESL1 = E-selectin ligand 1 (also known as GLG1), ICAM = Intercellular 
adhesion molecule, JAM = Junctional adhesion molecule, LFA1 = Lymphocyte 
function-associated antigen 1, PECAM1 = Platelet/endothelial cell adhesion molecule 1, 
PSGL1 = P selectin glycoprotein ligand 1, VCAM1 = Vascular cell adhesion protein 1, VE 
cadherin = Vascular endothelial cadherin, VLA4 = Very late antigen 4[36]
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 response is dysregulated with the abnormal accumulation 
of  neutrophil, impaired recruitment of  neutrophils to the 
infectious foci, and damaged neutrophil migration. Of note, 
the neutrophil cell membrane altered, becoming more rigid 
and less deformed, and this change in rigidity increases pro-
portionally with sepsis severity.[37] As a result, neutrophils 
sequester in the capillary beds, especially those in lung and 
liver sinusoids and the process will lead to microvascular 
occlusion, resulting in the tissue ischemia and subsequently 
multiple organ failure.[37,38] Nitric oxide (NO) and its pro-
ducer inducible nitric oxide synthase (iNOS), the sine qua 
non in neutrophil migration impairment, downregulate neu-
trophil migration mainly from the following three aspects: 
1. The iNOS inhibits leukocyte β-integrins and selectins as 

well as downregulates vascular cell adhesion molecule 
(VCAM)-1[39,40] and;

2. NO interacts with other molecules like reaction oxygen 
species (ROS), forming peroxynitrite that can decrease 
neutrophil chemotactic activity[41] and leukocyte-
endothelium interaction which relays on P-selectin[42,43]; 

3. NO can induce heme oxygenase (HO)-1 expression, one 
that can impair neutrophil rolling and adhesion.[44,45] 

Besides, the enhanced level of  carbon monoxide (CO) 
and bilirubin in serum and exhaled breath of  septic pa-
tients[46,47] also indicate that HO-1 pathway plays a role in 
this pathology. The proteins on the cell-surface and the 
nuclear as the receptor like C-X-C chemokine receptor 
(CXCR) type 2, C-C chemokine receptor (CCR) type 2, 
and peroxisome proliferator-acti  vated receptor (PPAR)γ, 
mediate the impairment in neutrophil migration. Their 
participation can be justified by:
1. Decreased expression of  CXCR2 on neutrophil isolated 

from septic patients[48] and the upregulation of  CCR2 
on circulating murine netrophil during sepsis[49] have 
been found, which are due, at least in part, to the TLR 
signaling[50-52];

2. The expression of  PPARγ increased in the isolated 
neutrophil from not only septic mice but septic 
patients.[53] 

Another novel finding is that the direction of neutrophil mi-
gration was error during sepsis[54] and the consequence is com-
plex in vivo. The precise mechanism about how neutrophils 
direct to the target destination is incompletely understood. 

To maintain the homeostasis of  neutrophils, the key thing is 
a fine management of  the balance between the income and 
outcome neutrophils. Homeostatic removal of  neutrophils 
mainly gives the credit to the macrophages[55] and to a small 
extent by the dendritic cells and lymph nodes. In it neu-
trophil undergoing apoptosis allows removal by scavenger 
macrophage[56] and constitutive apoptosis of  neutrophil is an 

essential factor for keeping neutrophil homeostasis. How-
ever, in patients with sepsis the apoptosis of  neutrophil is 
delayed[57-59], which may contribute to tissue injury associated 
with the multiple organ dysfunction syndrome (MODS) of  
sepsis. The mechanisms that govern this process are not com-
pletely understood and the recent investigation found that 
the inflammation mediators, i.e., granulocyte-macrophage 
colony-stimulating factor (GM-CSF), IL-18[60,61], which regu-
late the pro- and anti-apoptosis genes leading to the change 
of  apoptosis relevant factors expression: B-cell lymphoma 
(BCL)-2 members,[62] the sFas, Dad1,[63] etc., can manage it. 
Remarkably, additional upstream regulatory factors of  these 
apoptosis factors are involved in the delayed apoptosis of  
neutrophil in sepsis. In addition the destructed mitochon-
drial transmembrane potential and the reduced activity of  
caspase 3,9[59] also dampen the apoptosis. Along with the 
death combined with a formation of  neutrophil extracel-
lular traps (NETs) which contain nuclear components (like 
deoxyribonucleic acid, DNA and histones) are decorated 
by various proteins.[64] During sepsis, NETs present like a 
double-edged swords: They can trap microorganisms [64] 
through NET-localized molecules; moreover, they exert 
detrimental effects that contribute to tissue damage.[65]  

    Platelet-neutrophil interaction during sepsis
Platelets and neutrophils have the potential to promote 
inflammatory response during sepsis independently of  
each other, but together   platelet-neutrophil interactions 
can induce a faster and harder response.[11,65] In the early 
phase of  sepsis, possibility of  collisions between platelets 
and leukocytes is promoted by the rheological margination 
of  neutrophil exiting the central core of  the blood vessel. 
With further activation by septic inflammatory stimuli 
(PAMPs and DAMPs), platelet–neutrophil interactions 
are extensively formed.[66] It is well accepted that activated 
platelets adhere to neutrophils through a rapid surface 
expression of  a granular protein P-selectin that binding 
to the high affinity counter ligand PSGL-1 expressed on 
neutrophils.[67-69] Engagement of  PSGL-1 leads to further 
neutrophil activation of  the β

2
-integrins, CD11a/CD18, 

LFA-1 (αLβ
2
), CD11b/CD18 and Mac-1 (αMβ2) that do 

not require additional stimuli,[70-72] which result in massive 
neutrophil migration and accumulation in distal organs 
such as lung and liver to cause tissue injury. Related to this, 
Clark et al. found that isolated human neutrophils require 
2-4 hours stimulation to release NET, however it took a 
few minutes when interact with lipopolysaccharide (LPS)-
stimulated platelets under flow.[65] Further studies discover 
that platelet-induced NET release is dependent on lympho-
cyte function-associated antigen (LFA)-1 interaction both in 
murine and human sepsis. [73] Although NET formation is 
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critical for ensnare bacteria, it can also provide a stimulus 
and scaffold for thrombus formation, by promoting plate  let 
and RBC adhesion and by concentrating effector proteins 
and coagulation factors involved in clotting to aggravate 
DIC and tissue damage during sepsis.[73,74]

The interaction between CD40 and its ligand CD40L acti-
vates various pathways in immune and non-immune cells 
related to inflammation and was shown to be critical for 
the development of  sepsis.[75,76] Activated by septic stimula-
tion, expression of  CD40L i  s severely increased on platelet 
surface and shed into circulation to interact with immune 
cells.[75,77] Platelet-derived CD40L can be sensed by CD40 
on endothelial cell to induce upregulation of  intercellular 
Adhesion Molecule (ICAM)1 and VCAM1 and release of  
CCL2, thereby indirectly promoting leukocyte recruitment 
to inflammatory sites.[78] In addition, platelet-derived CD40L 
can directly interact with neutrophil CD40 and enhance the 
neutrophil activation and ROS generation.[79] Another way 
in which platelets interact with neutrophils during sepsis 
is through triggering receptor expressed on myeloid cells 
(TREM)1.[80] In the presence of  LPS neutrophils and plate-
lets interact through TREM1 activation, which increases 
neutrophil-mediated production of  ROS and secretion of  
IL-8.[81] TREM-like transcript (TLT)1,   an orphan receptor 
only expressed in the α-granules of  platelets and megakaryo-
cytes, is newly demonstrated to be significantly upregulated 
in the plasma of  patients with sepsis and correlated with the 
outcome in these patients.[82] These observations suggest 
that TREM1 ligand TREM-like family may have synergetic 

effects on interaction of  neutrophils and platelets during 
sepsis[9] [Figure 1].

Incre asing evidences have proved that the interactions 
between platelet and neutrophil play a major role in the 
development of  organ failure both in septic patients and 
experimental animals. In patients with sepsis, enhanced 
platele t-neutrophil interaction was determined by increased 
platelet-leukocyte conjugates in blood using a double-
labeling flow cytometry technique and this interaction 
correlated with the severity of  septic organ dysfunction.[83] 
Platelets mediate excessive neutrophil recruitment in lung 
and acute lung injury via CD40L/Mac-1 pathway in muri  ne 
abdominal sepsis.[79] Neutrophil-dependent recruitment of  
platelets in the liver microcirculation impairs sinusoidal 
perfusion and may contribute to the liver dysfunction in 
murine abdominal sepsis.[84]

Therapeutic potential for platele  t-neutrophil interaction 
in sepsis
Clinical therapeutic strategy for platelet or neutrophil alone 
has been applied for several decades and achieved a great 
success. However, therapeutic strategy targeting platelet-
neutrophil interaction in sepsis is barely seen. Come a long 
way in understanding of  molecular and cellular basis of  
platele t-neutrophil interaction in sepsis, a growing body of  
studies focuses on the interference with platelet-neutrophil 
interaction in sepsis. Ogura H et al.   reported P-selectin-
dependent platelet-neutrophil interaction is involved in the 

Figure 1: Platelet-neutrophil interaction during sepsis. During sepsis, activated platelets attach to neutrophils via a selectin dependent process, 
namely the release and expression P-selectin of platelet from a-granules which binds to the counter ligand P-selectin glycoprotein ligand (PSGL) 
expressed on neutophils. Besides that, activated platelet can expression CD40L and then shed it into circulation. Triggering receptor expressed 
on myeloid cells (TREM)1, triggering receptor expressed on myeloid cells together with CD40L interact with neutrophils which can further promote 
the activation of neutophils and its generation of reaction oxygen species (ROS). For platelet-expressed CD40L, it can also interact with CD40 
on endothelial cells to stimulate the endothelial cell to a pro-infl ammatory phenotype: upregulation of intercellular adhesion molecule (ICAM)1 
and vascular cell adhesion molecule (VCAM)1, thereby driving neutrophil recruitment. The platelet can also mediate the formation of neutrophil 
extracellular trap (NET) via the interaction of lymphocyte function-associated antigen (LFA)-1, which can trap free bacteria and enhance the 
platelet and red blood cell (RBC) adhesion to promote thrombus formation.
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outcome of  severely septic patients and P-selectin blockade 
markedly inhibited this interaction.[85] Exposed to cecal liga-
tion and puncture (CLP), CD40L gene-deficient mice show 
a significantly inhibited platelet-neutrophil interaction and 
alleviated pulmonary damage.[79] Experimental inhibition 
of  PSGL-1 significantly abolished CLP-induced platelet-
neutrophil aggregation which has no effect on neutrophil 
expression of  Mac-1.[10] Owing to crucial role on platelet-
neutrophil interaction, TREM1-silenced mice are highly 
resistant to a lethal endotoxin challenge and partial silenc-
ing of  TREM1 in the bacterial peritonitis model produces 
a significant survival benefit.[86] Exciting times lies ahead, 
with the improving awareness of  intracellular machinery, 
we are on the cusp of  converting new lessons from intravital 
studies into novel effective treatment options.

Conclusion
Sepsis, frequently occurs after hemorrhage, trauma, burn, or 
abdominal surgery, remains a major challenge both for clinicians 
and researchers. Despite many years of intensive research and 
numerous clinical studies, its pathophysiology is still incom-
pletely understood, and some specific treatments have not been 
successful in clinical trials. This is mainly due to the fact that 
sepsis can be characterized as a complex and dynamic disease 
process. Targeting platelet-neutrophil interaction is a promising 
field for sepsis management and infection control. Developing 
sepsis-specific platelet-neutrophil interaction for patients is a 
path strewn with obstacles, but an exciting and promising area 
of research. Understanding of sepsis-induced platelet-neutrophil 
interaction offers vast opportunities for improving the mortality 
and morbidity from sepsis. We expect that this novel strategy 
will continue to be clinically assessed and potentially exploited 
for the more effective future treatment of sepsis.
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